找回密码
 注册
查看: 889|回复: 0

R语言 aroma.light包 normalizeCurveFit.matrix()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 12:05:43 | 显示全部楼层 |阅读模式
normalizeCurveFit.matrix(aroma.light)
normalizeCurveFit.matrix()所属R语言包:aroma.light

                                        Weighted curve-fit normalization between a pair of channels
                                         一双渠道之间的加权曲线拟合标准化

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Weighted curve-fit normalization between a pair of channels.
加权曲线拟合标准化之间一双渠道。

This method will estimate a smooth function of the dependency between the log-ratios and the log-intensity of the two channels and then correct the log-ratios (only) in order to remove the dependency. This is method is also known as intensity-dependent or lowess normalization.
这种方法将估计光滑函数的log率和强度的两个通道的log之间的依赖关系,然后纠正log比率(只),以消除依赖。这是方法,也被称为依赖强度或LOWESS标准化。

The curve-fit methods are by nature limited to paired-channel data. There exist at least one method trying to overcome this limitation, namely the cyclic-lowess [1], which applies the paired curve-fit method iteratively over all pairs of channels/arrays. Cyclic-lowess is not implented here.
不限于自然配对通道数据的曲线拟合方法。存在至少有一个方法试图克服这种局限性,即循环LOWESS [1],它适用于双通道/阵列配对的曲线拟合方法反复。循环,的LOWESS是不implented这里。

We recommend that affine normalization [2] is used instead of curve-fit normalization.
我们建议,仿射标准化[2],而不是使用曲线拟合标准化。


用法----------Usage----------





参数----------Arguments----------

参数:X
An Nx2 matrix where the columns represent the two channels to be normalized.
一个的NX2matrix列代表两个渠道进行标准化。


参数:weights
If NULL, non-weighted normalization is done. If data-point weights are used, this should be a vector of length N of data point weights used when estimating the normalization function.  
如果NULL,非加权标准化完成。如果使用的数据点的权重,这应该是一个长度为N的数据点的权重vector估计标准化的功能时使用。


参数:typeOfWeights
A character string specifying the type of weights given in argument weights.  
一个character字符串,指定类型参数weights给定的权重。


参数:method
character string specifying which method to use when fitting the intensity-dependent function. Supported methods: "loess" (better than lowess), "lowess" (classic; supports only zero-one weights), "spline" (more robust than lowess at lower and upper intensities; supports only zero-one weights), "robustSpline" (better than spline).  
character字符串指定装修时使用的强度依赖的函数的方法。支持的方法:"loess"(优于LOWESS),"lowess"(经典;只支持零一重),"spline"(LOWESS在上下的强度超过健壮;支持零1权重),"robustSpline"(比样条)。


参数:bandwidth
A double value specifying the bandwidth of the estimator used.  
一个double值,指定所使用的估计带宽。


参数:satSignal
Signals equal to or above this threshold will not be used in the fitting.  
等于或高于此阈值的信号将不会被使用在装修。


参数:...
Not used.
不使用。


Details

详情----------Details----------

A smooth function c(A) is fitted throught data in (A,M), where M=log_2(y_2/y_1) and A=1/2*log_2(y_2*y_1). Data is normalized by M <- M - c(A).
装在一个光滑函数c(A)(A,M)M=log_2(y_2/y_1)和A=1/2*log_2(y_2*y_1)throught数据。数据归M <- M - c(A)。

Loess is by far the slowest method of the four, then lowess, and then robust spline, which iteratively calls the spline method.
黄土高原是迄今为止最慢的四种方法,然后LOWESS,然后强大的样条,反复调用样条方法。


值----------Value----------

A Nx2 matrix of the normalized two channels. The fitted model is returned as attribute modelFit.
一个的NX2matrix归两个通道。属性modelFit返回拟合模型。


负,不积极,饱和值----------Negative, non-positive, and saturated values----------

Non-positive values are set to not-a-number (NaN). Data points that are saturated in one or more channels are not used to estimate the normalization function, but they are normalized.
非正面的价值观不是一个数(NaN)。不使用数据,在一个或多个通道饱和点估计标准化的功能,但它们归。


遗漏值----------Missing values----------

The estimation of the affine normalization function will only be made based on complete non-saturated observations, i.e. observations that contains no NA values nor saturated values as defined by satSignal.
估计仿射标准化功能将只基于完整的非饱和的意见,即观察,其中包含没有NA值也不作为satSignal的定义饱和值。


加权标准化----------Weighted normalization----------

Each data point, that is, each row in X, which is a vector of length 2, can be assigned a weight in [0,1] specifying how much it should affect the fitting of the affine normalization function. Weights are given by argument weights, which should be a numeric vector of length N. Regardless of weights, all data points are normalized based on the fitted normalization function.
每个数据点,也就是X,这是一个长度为2的向量的每一行,可以指定在[0,1]重量指定多少应该影响的仿射标准化函数的拟合。权重由参数weights,这应该是一个numericvector长度为N的重量,所有数据点的基础上拟合标准化功能标准化。

Note that the lowess and the spline method only support zero-one {0,1} weights. For such methods, all weights that are less than a half are set to zero.
请注意的的LOWESS和样条法,只支持零一{0,1}重量。对于这种方法,所有的权重,不到一个半被设置为零。


黄土详情----------Details on loess----------

For loess, the arguments family="symmetric", degree=1, span=3/4, control=loess.control(trace.hat="approximate", iterations=5, surface="direct") are used.
loess,参数family="symmetric",degree=1,span=3/4,control=loess.control(trace.hat="approximate",iterations=5,surface="direct")用于。


作者(S)----------Author(s)----------


Henrik Bengtsson (<a href="http://www.braju.com/R/">http://www.braju.com/R/</a>)



参考文献----------References----------

Contrast Normalization of Oligonucleotide Arrays, Journal Computational Biology, 2003, 10, 95-102. <br> [2] Henrik Bengtsson and Ola H鰏sjer, Methodological Study of Affine Transformations of Gene Expression Data, Methodological study of affine transformations of gene expression data with proposed robust non-parametric multi-dimensional normalization method, BMC Bioinformatics, 2006, 7:100. <br>

参见----------See Also----------

*normalizeAffine().
*normalizeAffine()。


举例----------Examples----------


pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
rg <- read.table(pathname, header=TRUE, sep="\t")
nbrOfScans <- max(rg$slide)

rg <- as.list(rg)
for (field in c("R", "G"))
  rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
rg$slide <- rg$spot <- NULL
rg <- as.matrix(as.data.frame(rg))
colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)

layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))

rgC <- rg
for (channel in c("R", "G")) {
  sidx <- which(colnames(rg) == channel)
  channelColor <- switch(channel, R="red", G="green");

  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -[--------------------------------]
  # The raw data[原始数据]
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -[--------------------------------]
  plotMvsAPairs(rg[,sidx])
  title(main=paste("Observed", channel))
  box(col=channelColor)

  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -[--------------------------------]
  # The calibrated data[校准数据]
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -[--------------------------------]
  rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)

  plotMvsAPairs(rgC[,sidx])
  title(main=paste("Calibrated", channel))
  box(col=channelColor)
} # for (channel ...)[(通道......)]


# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -[--------------------------------]
# The average calibrated data[平均校准数据]
#[]
# Note how the red signals are weaker than the green. The reason[注意:红色信号弱于绿色。究其原因]
# for this can be that the scale factor in the green channel is[这可能是在绿色通道的比例因子是]
# greater than in the red channel, but it can also be that there[大于在红色通道,但它也可以是有]
# is a remaining relative difference in bias between the green[是剩余的偏见相对差异的绿色]
# and the red channel, a bias that precedes the scanning.[和红色通道,前面的扫描偏见。]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -[--------------------------------]
rgCA <- rg
for (channel in c("R", "G")) {
  sidx <- which(colnames(rg) == channel)
  rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
}

rgCAavg <- matrix(NA, nrow=nrow(rgCA), ncol=2)
colnames(rgCAavg) <- c("R", "G");
for (channel in c("R", "G")) {
  sidx <- which(colnames(rg) == channel)
  rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE);
}

# Add some "fake" outliers[添加一些“假”离群]
outliers <- 1:600
rgCAavg[outliers,"G"] <- 50000;

plotMvsA(rgCAavg)
title(main="Average calibrated (AC)")

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -[--------------------------------]
# Normalize data[标准化数据]
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -[--------------------------------]
# Weight-down outliers when normalizing[正火时体重下降离群]
weights <- rep(1, nrow(rgCAavg));
weights[outliers] <- 0.001;

# Affine normalization of channels[仿射标准化的渠道]
rgCANa <- normalizeAffine(rgCAavg, weights=weights)
# It is always ok to rescale the affine normalized data if its[它始终是确定以重新调整仿射规范化的数据,如果其]
# done on (R,G); not on (A,M)! However, this is only needed for[(的R,G);不上(A,M模式)!然而,这仅仅是需要]
# esthetic purposes.[审美的目的。]
rgCANa <- rgCANa *2^1.4
plotMvsA(rgCANa)
title(main="Normalized AC")

# Curve-fit (lowess) normalization[曲线拟合(LOWESS)标准化]
rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
plotMvsA(rgCANlw, col="orange", add=TRUE)

# Curve-fit (loess) normalization[曲线拟合(黄土)标准化]
rgCANl <- normalizeLoess(rgCAavg, weights=weights)
plotMvsA(rgCANl, col="red", add=TRUE)

# Curve-fit (robust spline) normalization[曲线拟合(强大的样条)标准化]
rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
plotMvsA(rgCANrs, col="blue", add=TRUE)

legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
       col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")


plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
title(main="Normalized AC")
plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
abline(a=0, b=1, lty=2)
legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
       col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")



转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-23 21:08 , Processed in 0.022002 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表