找回密码
 注册
查看: 528|回复: 0

R语言 sme包 sme()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 10:22:19 | 显示全部楼层 |阅读模式
sme(sme)
sme()所属R语言包:sme

                                        Smoothing-splines mixed-effects models
                                         平滑样条混合效应模型

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This generic function fits a smoothing-splines mixed-effects model
这个通用的功能适合平滑样条混合效应模型


用法----------Usage----------


sme(object,tme,ind,verbose=F,lambda.mu=NULL,lambda.v=NULL,maxIter=500,
knots=NULL,zeroIntercept=F,deltaEM=1e-3,deltaNM=1e-3,criteria="AICc",...)



参数----------Arguments----------

参数:object
either a vector of observations, a data.frame object or a list of vectors of observations. The method functions sme.data.frame and sme.list are documented separately
无论是观测向量,data.frame对象或list矢量观测。方法的功能sme.data.frame和sme.list是将单独


参数:tme
either a vector of time points corresponding to the observations given in object or a list of vectors of time points in the case of sme.list. Ignored in the case of sme.data.frame
无论是矢量的时间点对应于给定的观察在object或时间点的向量列表中的箱子sme.list。被忽略的情况下,sme.data.frame


参数:ind
a factor (or a vector that can be coerced to a factor) of subject identifiers corresponding to the observations given in object or a list of factors of subject identifiers in the case of sme.list. Ignored   in the case of sme.data.frame
一个因素(或向量,可以强制转换为一个因素)的主体标识符相应的意见,在object或的主体标识符的因素列表中的情况下,sme.list。被忽略的情况下,sme.data.frame


参数:verbose
if TRUE, debug information will be output while fitting the model
如果TRUE,调试信息将被输出,而拟合模型


参数:lambda.mu
smoothing parameter used for the fixed-effect function. If NULL, the optimal values for this and lambda.v will be found according to criteria using Nelder-Mead search
平滑参数用于固定效应功能。如果NULL“的最佳值,这和lambda.v将根据criteria使用内尔德酒搜索


参数:lambda.v
smoothing parameter used for the random-effects functions. If NULL, the optimal values for this and lambda.mu will be found according to criteria using Nelder-Mead search
用于平滑参数的随机效应功能。如果NULL“的最佳值,这和lambda.mu将根据criteria使用内尔德酒搜索


参数:maxIter
maximum number of iterations to be performed for the EM algorithm
EM算法来执行的最大迭代次数


参数:knots
location of spline knots. If NULL, an incidence matrix representation will be used. See "Details"
花键结的位置。如果NULL,关联矩阵表示将使用。请参阅“详细信息”


参数:zeroIntercept
experimental feature. If TRUE, the fitted values of the fixed- and random-effects functions at the intercept will be zero
实验功能。如果TRUE,拟合的截距的固定和随机效应功能之值将是零


参数:deltaEM
convergence tolerance for the EM algorithm
EM算法的收敛公差


参数:deltaNM
(relative) convergence tolerance for the Nelder-Mead optimisation
(相对)的收敛公差内尔德米德优化


参数:criteria
one of "AICc", "AIC", "BICN" or "BICn" indicating which criteria to use to score a particular combination of lambda.mu and lambda.v in the Nelder-Mead search
"AICc","AIC","BICN"或"BICn"表示使用哪些标准得分的特定组合lambda.mu和lambda.v在内尔德 - 米德搜索


参数:...
additional arguments to sme.data.frame or sme.list
额外的参数sme.data.frame或sme.list


Details

详细信息----------Details----------

The default behaviour is to use an incidence matrix representation for the smoothing-splines. This works well in most situations but may incur a high computational cost when the number of distinct time points is large, as may be the case for irregularly sampled data. Alternatively, a basis projection can be used by giving a vector of knots of length (much) less than the number of distinct time points.
默认行为是使用的发病率的平滑样条的矩阵表示。在大多数情况下,这工作得很好,但可能会产生较高的计算成本时不同时间点的数量很大,如可能的情况下为不规则采样数据。可选地,可使用的基础突起通过给人一种向量的knots长度(多)的数目小于不同的时间点。


值----------Value----------

An object of class sme representing the smoothing-splines mixed-effects model fit. See smeObject for the components of the fit and plot.sme for visualisation options
对象的类sme平滑样条混合效应模型拟合。 smeObject的组件的配合和plot.sme可视化选项


(作者)----------Author(s)----------


Maurice Berk <a href="mailto:maurice.berk01@imperial.ac.uk">maurice.berk01@imperial.ac.uk</a>



参考文献----------References----------



参见----------See Also----------

smeObject, sme.data.frame, sme.list, plot.sme
smeObject,sme.data.frame,sme.list,plot.sme


实例----------Examples----------


  data(MTB)
  fit.AIC <- sme(MTB[MTB$variable==6031,c("y","tme","ind")],criteria="AIC")
  fit.BICN <- sme(MTB[MTB$variable==6031,c("y","tme","ind")],criteria="BICN")
  fit.BICn <- sme(MTB[MTB$variable==6031,c("y","tme","ind")],criteria="BICn")
  fit.AICc <- sme(MTB[MTB$variable==6031,c("y","tme","ind")],criteria="AICc")

  fit <- sme(MTB[MTB$variable==6031,c("y","tme","ind")],lambda.mu=1e5,lambda.v=1e5)

  data(inflammatory)
  system.time(fit <- sme(inflammatory,deltaEM=0.1,deltaNM=0.1))
  system.time(fit <- sme(inflammatory,knots=c(29.5,57,84.5),deltaEM=0.1,deltaNM=0.1))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-29 04:50 , Processed in 0.056427 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表