smacofIndDiff(smacof)
smacofIndDiff()所属R语言包:smacof
smacof for Individual Differences
smacof个别差异
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Performs smacof for individual differences also known as Three-Way smacof on a list of dissimilarity matrices. Various restrictions decompositions and restrictions on the weight matrix are provided.
执行smacof也被称为三通smacof对列表中的相异矩阵的个体差异。权重矩阵的各种的限制分解和限制。
用法----------Usage----------
smacofIndDiff(delta, ndim = 2, weightmat = NULL, init = NULL, metric = TRUE,
ties = "primary", constraint = "indscal", verbose = FALSE, modulus = 1,
itmax = 1000, eps = 1e-6)
参数----------Arguments----------
参数:delta
A list of dissimilarity matrices or a list objects of class dist
的相异矩阵的列表或列表对象的类dist
参数:ndim
Number of dimensions
的维数
参数:weightmat
Optional matrix with dissimilarity weights
可选相异的权重矩阵
参数:init
Matrix with starting values for configurations (optional)
矩阵的初始值配置(可选)
参数:metric
If FALSE non-metric MDS is performed
如果FALSE非度量MDS进行
参数:ties
Tie specification for non-metric MDS
领带规范非度量MDS
参数:constraint
Either "indscal", "idioscal", or "identity" (see details)
无论是"indscal","idioscal"或"identity"(见详情)
参数:verbose
If TRUE, intermediate stress is printed out
如果TRUE,中间主应力打印出来
参数:modulus
Number of smacof iterations per monotone regression call
每单调回归呼叫smacof迭代的次数
参数:itmax
Maximum number of iterations
最大迭代次数
参数:eps
Convergence criterion
收敛准则
Details
详细信息----------Details----------
If the constraint is "indscal", INDSCAL is performed with configuration weight matrices restricted to be diagonal. IDIOSCAL can be computed using the "idioscal" argument. The weight matrices are then unconstrained. Addtional weight restrictions can be imposed with "identity" which restricts the configurations across individuals/replications/ways to be equal
如果约束是"indscal",INDSCAL进行配置重量限制为对角线的矩阵。 IDIOSCAL "idioscal"使用参数,可以计算。权重矩阵约束。 Addtional重量限制,可以并处"identity"限制个人/复制/方法的配置是相等的
值----------Value----------
参数:delta
Observed dissimilarities
观察到的不同点
参数:obsdiss
List of observed dissimilarities, normalized
观察到的不同点名单,归
参数:confdiss
List of configuration dissimilarities
列表的配置异同
参数:conf
List of matrices of final configurations
矩阵的最终配置列表
参数:gspace
Joint configurations aka group stimulus space
的联合配置又名组的刺激空间
参数:cweights
Configuration weights
配置权重
参数:stress.m
stress value for metric MDS
应力值公吨MDS
参数:stress.nm
stress value for non-metric MDS (if computed)
非度量MDS(如果计算应力值)
参数:stress.co
Constrained stress value
约束应力值
参数:spp
Stress per point
每点压力
参数:sps
Stress per subject (matrix)
每科应力(矩阵)
参数:ndim
Number of dimensions
的维数
参数:model
Type of smacof model
smacof模型的类型
参数:niter
Number of iterations
迭代次数。
参数:nobj
Number of objects
对象的数量
(作者)----------Author(s)----------
Jan de Leeuw and Patrick Mair
参考文献----------References----------
The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/i03/
参见----------See Also----------
smacofConstraint, smacofSym, smacofRect, smacofSphere.primal, smacofSphere.dual
smacofConstraint,smacofSym,smacofRect,smacofSphere.primal,smacofSphere.dual
实例----------Examples----------
data(perception)
res.id <- smacofIndDiff(perception, constraint = "identity") ## identity restricted weights[#身份限制重]
summary(res.id)
res.id$cweights
plot(res.id)
plot(res.id, type = "p", pch = 25, col = 4, label.conf = list(label = TRUE, pos = 3, col = 4))
res.diag <- smacofIndDiff(perception, constraint = "indscal") ## diagonally restricted weights[#对角线限制重量]
res.diag$cweights
plot(res.diag)
plot(res.diag, type = "p", pch = 25, col = 4, label.conf = list(label = TRUE, pos = 3, col = 4))
res.idio <- smacofIndDiff(perception, constraint = "idioscal") ## IDIOSCAL[#IDIOSCAL]
Wk <- res.idio$cweights
G <- res.idio$gspace
G
G
data(helm)
res.helm <- smacofIndDiff(helm, constraint = "indscal")
plot(res.helm, plot.type = "confplot")
barplot(sort(res.helm$sps, decreasing = TRUE), main = "Stress per Subject", cex.names = 0.8)
plot(res.helm, plot.type = "bubbleplot")
plot(res.helm, plot.type = "stressplot")
plot(res.helm, plot.type = "Shepard")
plot(res.helm, plot.type = "resplot")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|