找回密码
 注册
查看: 317|回复: 0

R语言 simsem包 popMisfitMACS()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 09:25:02 | 显示全部楼层 |阅读模式
popMisfitMACS(simsem)
popMisfitMACS()所属R语言包:simsem

                                         Find population misfit by sufficient statistics
                                         寻找足够的统计的人口失配

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Find the value quantifying the amount of population misfit: F_0, RMSEA, and SRMR.
查找的价值量化人口的失配量:F_0,RMSEA,和SRMR。


用法----------Usage----------


popMisfitMACS(paramM, paramCM, misspecM, misspecCM, dfParam=NULL, fit.measures="all")



参数----------Arguments----------

参数:paramM
The model-implied mean from the real parameters  
该模型隐含的意思是真正的参数


参数:paramCM
The model-implied covariance matrix from the real parameters  
从实际的参数模型隐含的协方差矩阵


参数:misspecM
The model-implied mean from the real and misspecified parameters  
该模型隐含的意思是真正的和误设参数


参数:misspecCM
The model-implied covariance matrix from the real and misspecified parameters  
该模型隐含的协方差矩阵的实部和误设参数


参数:dfParam
The degree of freedom of the real model  
真正的模型自由的程度


参数:fit.measures
The names of indices used to calculate population misfit. There are three types of misfit: 1) discrepancy function ("f0"; see popDiscrepancy), 2) root mean squared error of approximation ("rmsea"; Equation 12 in Browne & Cudeck, 1992), and 3) standardized root mean squared residual ("srmr")  
指数计算人口的失配的名称。有三种类型:1)失配的差异函数("f0"; popDiscrepancy),2)均方根误差近似("rmsea"式(12),1992年在布朗和Cudeck的),和3)标准化均方根平方剩余("srmr")


Details

详细信息----------Details----------

The root mean squared error of approximation (RMSEA) is calculated by
的近似误差均方根(RMSEA)的计算方法是

where F_0 is the discrepancy value between two means vectors and covariance matrices (see popDiscrepancy) and df is the degree of freedom in the real model.
F_0是两种手段向量和协方差矩阵(见popDiscrepancy)和df程度的自由,真正的模型之间的差异值。

The standardized root mean squared residual can be calculated by
标准化均方根平方剩余可以计算出

where s_{ij} is the observed covariance between indicators i and j, \hat{σ}_{ij} is the model-implied covariance between indicators i and j, p is the number of indicators.
s_{ij}是观察指标之间的协方差i和j\hat{σ}_{ij}是隐含的模型之间的协方差指标i和j,p是指标的数量。


值----------Value----------

The vector of the misfit indices
的失配指数的向量


(作者)----------Author(s)----------



Sunthud Pornprasertmanit (University of Kansas; <a href="mailto:psunthud@ku.edu">psunthud@ku.edu</a>)




参考文献----------References----------



实例----------Examples----------


m1 <- rep(0, 3)
m2 <- c(0.1, -0.1, 0.05)
S1 <- matrix(c(1, 0.6, 0.5, 0.6, 1, 0.4, 0.5, 0.4, 1), 3, 3)
S2 <- matrix(c(1, 0.55, 0.55, 0.55, 1, 0.55, 0.55, 0.55, 1), 3, 3)
popMisfitMACS(m1, S1, m2, S2)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-24 23:56 , Processed in 0.018915 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表