analyze2x2(SimpleTable)
analyze2x2()所属R语言包:SimpleTable
Analyze 2 x 2 Table in the Presence of Unmeasured Confounding
在测量的干扰因素分析2×2表
译者:生物统计家园网 机器人LoveR
描述----------Description----------
analyze2x2 performs a causal Bayesian analysis of a 2 x 2 table in which it is assumed that unmeasured confounding is present. The binary treatment variable is denoted X = 0 (control), 1 (treatment); and the binary outcome variable is denoted Y = 0 (failure), 1 (success). The
analyze2x2执行一个2×2表格中的假设测量的干扰因素存在的因果贝叶斯分析。处理变量表示的二进制X = 0(对照组),1(治疗);,结果变量的二进制表示Y = 0(失败),1(成功)。 “
用法----------Usage----------
analyze2x2(C00, C01, C10, C11, a00, a01, a10, a11,
b00, b01, b10, b11, c00, c01, c10, c11, nsamp = 50000)
参数----------Arguments----------
参数:C00
The number of observations in (X=0, Y=0) cell of the table. In other words, the number of observations that received control and failed.
(X=0, Y=0)表的单元格的若干意见。换言之,观察接收到的控制和失败的数目。
参数:C01
The number of observations in (X=0, Y=1) cell of the table. In other words, the number of observations that received control and succeeded.
(X=0, Y=1)表的单元格的若干意见。换句话说,观察,控制和成功。
参数:C10
The number of observations in (X=1, Y=0) cell of the table. In other words, the number of observations that received treatment and failed.
(X=1, Y=0)表的单元格的若干意见。换言之,观察,接受治疗和失败的数目。
参数:C11
The number of observations in (X=1, Y=1) cell of the table. In other words, the number of observations that received treatment and succeeded.
(X=1, Y=1)表的单元格的若干意见。换句话说,观测值的数量,接受治疗和成功了。
参数:a00
One of four parameters (with a01, a10, and a11 governing the Dirichlet prior for theta (the joint probabilities of X and Y). This prior has the effect of adding a00 - 1 observations to the (X=0, Y=0) cell of the table.
其中的四个参数(用a01,a10和a11执政前的Dirichlet theta(X和Y的联合概率 ),这之前有添加a00 - 1观测到(X=0, Y=0)表的单元格的效果。
参数:a01
One of four parameters (with a00, a10, and a11 governing the Dirichlet prior for theta (the joint probabilities of X and Y). This prior has the effect of adding a01 - 1 observations to the (X=0, Y=1) cell of the table.
其中的四个参数(用a00,a10和a11执政前的Dirichlet theta(X和Y的联合概率 ),这之前有添加a01 - 1观测到(X=0, Y=1)表的单元格的效果。
参数:a10
One of four parameters (with a00, a01, and a11 governing the Dirichlet prior for theta (the joint probabilities of X and Y). This prior has the effect of adding a10 - 1 observations to the (X=1, Y=0) cell of the table.
其中的四个参数(用a00,a01和a11执政前的Dirichlet theta(X和Y的联合概率 ),这之前有添加a10 - 1观测到(X=1, Y=0)表的单元格的效果。
参数:a11
One of four parameters (with a00, a01, and a10 governing the Dirichlet prior for theta (the joint probabilities of X and Y). This prior has the effect of adding a11 - 1 observations to the (X=1, Y=1) cell of the table.
其中的四个参数(用a00,a01和a10执政前的Dirichlet theta(X和Y的联合概率 ),这之前有添加a11 - 1观测到(X=1, Y=1)表的单元格的效果。
参数:b00
One of two parameters (with c00) governing the beta prior for the distribution of potential outcome types within the (X=0, Y=0) cell of the table. This prior adds the same information as would be gained from observing b00 - 1 Helped units in the (X=0, Y=0) cell of the table.
其中的两个参数(用c00)执政前的测试可能的结果类型的分布在(X=0, Y=0)表的单元格。前增加了观察b00 - (X=0, Y=0)表的单元格的帮助单位将获得相同的信息。
参数:b01
One of two parameters (with c01) governing the beta prior for the distribution of potential outcome types within the (X=0, Y=1) cell of the table. This prior adds the same information as would be gained from observing b01 - 1 Always Succeed units in the (X=0, Y=1) cell of the table.
其中的两个参数(用c01)执政前的测试可能的结果类型的分布在(X=0, Y=1)表的单元格。这之前增加将获得相同的信息,从观察b01 - 1(X=0, Y=1)表的单元格中总是成功的单位。
参数:b10
One of two parameters (with c10) governing the beta prior for the distribution of potential outcome types within the (X=1, Y=0) cell of the table. This prior adds the same information as would be gained from observing b10 - 1 Hurt units in the (X=1, Y=0) cell of the table.
其中的两个参数(用c10)执政前的测试可能的结果类型的分布在(X=1, Y=0)表的单元格。前增加了观察b10 - (X=1, Y=0)表的单元格的伤害单位将获得相同的信息。
参数:b11
One of two parameters (with c11) governing the beta prior for the distribution of potential outcome types within the (X=1, Y=1) cell of the table. This prior adds the same information as would be gained from observing b11 - 1 Always Succeed units in the (X=1, Y=1) cell of the table.
其中的两个参数(用c11)执政前的测试可能的结果类型的分布在(X=1, Y=1)表的单元格。这之前增加将获得相同的信息,从观察b11 - 1(X=1, Y=1)表的单元格中总是成功的单位。
参数:c00
One of two parameters (with b00) governing the beta prior for the distribution of potential outcome types within the (X=0, Y=0) cell of the table. This prior adds the same information as would be gained from observing b00 - 1 Never Succeed units in the (X=0, Y=0) cell of the table.
其中的两个参数(用b00)执政前的测试可能的结果类型的分布在(X=0, Y=0)表的单元格。这之前增加将获得相同的信息,从观察b00 - 1(X=0, Y=0)表的单元格绝对不能得逞的单位。
参数:c01
One of two parameters (with b01) governing the beta prior for the distribution of potential outcome types within the (X=0, Y=1) cell of the table. This prior adds the same information as would be gained from observing c01 - 1 Hurt units in the (X=0, Y=1) cell of the table.
其中的两个参数(用b01)执政前的测试可能的结果类型的分布在(X=0, Y=1)表的单元格。前增加了观察c01 - (X=0, Y=1)表的单元格的伤害单位将获得相同的信息。
参数:c10
One of two parameters (with b10) governing the beta prior for the distribution of potential outcome types within the (X=1, Y=0) cell of the table. This prior adds the same information as would be gained from observing c10 - 1 Never Succeed units in the (X=1, Y=0) cell of the table.
其中的两个参数(用b10)执政前的测试可能的结果类型的分布在(X=1, Y=0)表的单元格。这之前增加将获得相同的信息,从观察c10 - 1(X=1, Y=0)表的单元格绝对不能得逞的单位。
参数:c11
One of two parameters (with b11) governing the beta prior for the distribution of potential outcome types within the (X=1, Y=1) cell of the table. This prior adds the same information as would be gained from observing b11 - 1 Helped units in the (X=1, Y=1) cell of the table.
其中的两个参数(用b11)执政前的测试可能的结果类型的分布在(X=1, Y=1)表的单元格。前增加了观察b11 - (X=1, Y=1)表的单元格的帮助单位将获得相同的信息。
参数:nsamp
Size of the Monte Carlo sample used to summarize the posterior.
蒙特卡罗样本的大小,使用后总结。
Details
详细信息----------Details----------
analyze2x2 performs the Bayesian analysis of a 2 x 2 table described in Quinn (2008). summary and plot
analyze2x2执行一个2×2表奎恩(2008年)中描述的贝叶斯分析。 summary和plot
值----------Value----------
An object of class SimpleTable.
对象的类SimpleTable。
(作者)----------Author(s)----------
Kevin M. Quinn
参考文献----------References----------
Table: Bayesian Inference and Sensitivity Analysis for Causal Effects from 2 x 2 and 2 x 2 x K Tables in the Presence of Unmeasured
参见----------See Also----------
ConfoundingPlot, analyze2x2xK, ElicitPsi, summary.SimpleTable, plot.SimpleTable
ConfoundingPlot,analyze2x2xK,ElicitPsi,summary.SimpleTable,plot.SimpleTable
实例----------Examples----------
## Not run: [#不运行:]
## Example from Quinn (2008)[#示例从奎因(2008)]
## (original data from Oliver and Wolfinger. 1999. [#(奥利弗和Wolfinger 1999年的原始数据。]
## ``Jury Aversion and Voter Registration.'' [“陪审团的厌恶和选民登记。]
## American Political Science Review. 93: 147-152.)[#美国政治科学评论。 93:147-152)。]
##[#]
## Y=0 Y=1[#Y = 0,Y = 1]
## X=0 19 143[#X = 0 19 143]
## X=1 114 473[#X = 1 114 473]
##[#]
## uniform prior on the potential outcome distributions[#前的可能结果分布均匀]
S.unif <- analyze2x2(C00=19, C01=143, C10=114, C11=473,
a00=.25, a01=.25, a10=.25, a11=.25,
b00=1, c00=1, b01=1, c01=1,
b10=1, c10=1, b11=1, c11=1)
summary(S.unif)
plot(S.unif)
## a prior belief in an essentially negative monotonic treatment effect [#先前的信念,基本上是负面的单调的治疗效果]
S.mono <- analyze2x2(C00=19, C01=143, C10=114, C11=473,
a00=.25, a01=.25, a10=.25, a11=.25,
b00=0.02, c00=10, b01=25, c01=3,
b10=3, c10=25, b11=10, c11=0.02)
summary(S.mono)
plot(S.mono)
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|