snp.long(SimHap)
snp.long()所属R语言包:SimHap
Single SNP analysis for longitudinal data
纵向数据的单核苷酸多态性分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
snp.long is used to fit linear mixed effects models to single SNP genotype and phenotype data for longitudinal outcomes.
snp.long来拟合线性混合效应模型,以单个SNP的基因型和表型数据进行纵向的结果。
用法----------Usage----------
snp.long(fixed, random, geno, pheno, cor = "corCAR1", form=~1,
value = 0.2, sub = NULL)
参数----------Arguments----------
参数:fixed
as per lme. A two-sided linear formula object describing the fixed-effects part of the model including SNP parameters, with the response on the left of a ~ operator and the terms, separated by + operators.
如每lme。一个双面的线性公式对象描述固定效应的模型,包括SNP参数,左边的一个~运营商和条款上的响应,分离+运营商。
参数:random
as per lme. A one-sided formula of the form ~x1+...+xn | g1/.../gm, with x1+...+xn specifying the model for the random effects and g1/.../gm the grouping structure (m may be equal to 1, in which case no / is required). The random effects formula will be repeated for all levels of grouping, in the case of multiple levels of grouping.
如每lme。是一种片面的公式的形式~x1+...+xn | g1/.../gm与x1+...+xn指定型号的随机效应和g1/.../gm的分组结构(m可能是等于1,情况下,不/是必需的)。各级分组,多级分组的情况下,将重复的随机效应公式。
参数:geno
a dataframe containing genotype data.
一个数据框的基因型数据。
参数:pheno
a dataframe containing phenotype data.
一个数据框的表型数据。
参数:cor
a corStruct object describing the within-group correlation structure. Available correlation structures are corAR1, corCAR1, and corCompSymm. See the documentation of corClasses for a description of these. Defaults to corCAR1.
corStruct对象描述的组内相关结构。可供相关结构corAR1,corCAR1和corCompSymm等。查看的文档corClasses说明这些。默认为corCAR1的。
参数:form
a one sided formula of the form ~ t, or ~ t | g, specifying a time covariate t and, optionally, a grouping factor g. A covariate for this correlation structure must be integer valued. When a grouping factor is present in form, the correlation structure is assumed to apply only to observations within the same grouping level; observations with different grouping levels are assumed to be uncorrelated. Defaults to ~ 1, which corresponds to using the order of the observations in the data as a covariate, and no groups.
一个双面式的形式~ t,或~ t | g,指定时间协变量t和,任选地,分组因子g。这种相关性结构的协变量必须是整数值。当一个分组因子是本form,相关结构被假定只适用于在同一分组级别的观测观测具有不同的分组水平被假定为是不相关的。默认~ 1,对应的使用顺序的意见作为协变量的数据,并没有组。
参数:value
for corAR1: the value of the lag 1 autocorrelation, which must be between -1 and 1. For corCAR1: the correlation between two observations one unit of time apart. Must be between 0 and 1. For corCompSymm: the correlation between any two correlated observations. Defaults to 0.2.
corAR1:滞后1期自相关,它必须是-1到1之间的值。对于corCAR1:两个观测时间相隔的一个单元的之间的相关性。必须是在0和1之间。对于corCompSymm:任何两个相关的观测之间的相关性。默认为0.2的。
参数:sub
an expression representing a subset of the data on which to perform the models.
的数据的一个子集的表达式,表示在其上执行的模型。
值----------Value----------
snp.long returns an object of 'class' snpLong.
snp.long返回一个对象的“类”snpLong。
The summary function can be used to obtain and print a summary of the results.
summary函数可以用来获取和打印结果的摘要。
An object of class snpLong is a list containing the following components:
一个对象的类snpLong的是一个列表,其中包含以下组件:
参数:results
a table containing the coefficients, standard errors and p-values of the parameter estimates.
一个表中包含的系数,标准误差及p-值的参数估计。
参数:fixed_formula
fixed effects formula.
固定效应公式。
参数:random_formula
random effects formula.
随机效应公式。
参数:ANOD
analysis of deviance table for the fitted model.
分析拟合模型的偏差表。
参数:logLik
the log-likelihood for the fitted model.
对数似然的拟合模型。
参数:fit.lme
a lme object fit using formula.
lme对象适合使用公式。
参数:AIC
Akaike Information Criterion for the fitted model.
赤池信息准则的拟合模型。
参数:corStruct
correlation structure used in the fitted model.
相关结构拟合模型。
(作者)----------Author(s)----------
Pamela A. McCaskie
参考文献----------References----------
参见----------See Also----------
lme
lme
实例----------Examples----------
data(SNPlong.dat)
# transforms SNPlong.dat to an object containing 3 columns[转换到一个对象,它包含3列的SNPlong.dat]
# per SNP - additive, dominant and recessive, where genotypes[每个SNP - 添加剂,显性和隐性的,其中基因型]
# defined in 'baseline' serve as the baseline genotypes[中定义的“基线”作为基线基因型]
longGeno.dat <- SNP2Geno(SNPlong.dat, baseline=c("AA", "GG", "V2V2"))
data(longPheno.dat)
mymodel <- snp.long(fixed=fev1f~height+weight+SNP_1_add, random=~1|ID,
geno=longGeno.dat, pheno=longPheno.dat, form=~year|ID)
summary(mymodel)
# example with a subsetting variable, looking at males only[例如,一个子集变量,只在男性]
mymodel <- snp.long(fixed=fev1f~height+weight+SNP_1_add, random=~1|ID,
geno=longGeno.dat, pheno=longPheno.dat, form=~year|ID,
sub=expression(sex==1))
summary(mymodel)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|