simexaft(simexaft)
simexaft()所属R语言包:simexaft
SIMEX Algorithm for Accelerated Failure Time Model with Covariates Subject to Measurement Error
SIMEX加速失效时间模型与算法协变量的测量误差
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Implementation of the SIMEX algorithm for Accelerated Failure Time model with covariates subject to measurement error.
SIMEX算法加速失效时间模型的协变量的测量误差。
用法----------Usage----------
simexaft(formula = formula(data), data = parent.frame(),
SIMEXvariable, repeated = FALSE, repind = list(),
err.mat = err.mat, B = 50, lambda = seq(0, 2, 0.1),
extrapolation = "quadratic", dist = "weibull")
参数----------Arguments----------
参数:formula
specifies the model to be fitted, with the variables coming with data. This argument has the same format as the formula argument in the existing R function "survreg".
指定安装,与变量的数据模型。在现有的“的R函数”survreg“,这种说法有相同的格式,公式参数。
参数:data
optional data frame in which to interpret the varialbes occurring in the formula.
可选的数据框,其中解释发生在式varialbes。
参数:SIMEXvariable
the index of the covariate variables that are subject to measurement error.
受测量误差的协变量的索引。
参数:repeated
set to TRUE or FALSE to indicate if there are repeated measurements for the mis-measured variables.
设置为TRUE或FALSE表示,如果有反复测量,的误测得的变量。
参数:repind
the index of the repeated measurement variables for each mis-measured variable. It has an R list form. If repeated = TRUE, repind must be specify.
重复测量为每个误测得的变量的变量的索引。它的R列表形式。如果重复= TRUE,repind必须指定。
参数:err.mat
specifies the variables with measurement error, If repeated = FALSE, err.mat must be specify.
指定变量的测量误差,,如果重复= FALSE,err.mat必须指定。
参数:B
the number of simulated samples for the simulation step. The default is set to be 50.
模拟步骤的模拟样本的数目。默认设置为50。
参数:lambda
the vector of lambdas, the grids for the extrapolation step.
lambda表达式的矢量,网格的外推步骤。
参数:extrapolation
specifies the function form for the extrapolation step. The options are linear, quadratic and both. The default is set to be quadratic.(first 4 letters are enough)
的外推步骤指定的函数形式。线性,二次和两个选项。默认的设置为二次。(前4个字母是足够了)
参数:dist
specifies a parametric distribution that is assumed in AFT model. This argument is the same as the dist option in the existing R function "survreg". These include "weibull", "exponential", "gaussian", "logistic", "lognormal", and "loglogistic".
AFT模型是假设在指定参数分布。这种说法是在现有的“的R函数”survreg“dist选项相同。这些包括“威布尔”,“指数”,“高斯”,“MF”,“对数正态分布”,和“loglogistic。
Details
详细信息----------Details----------
If the SIMEXvariable is repeated measured then you only need to use arguments repeated and repind without mention err.mat. The summary.simex will contain repind.
如果SIMEXvariable重复测量,然后你只需要使用参数重复并没有提及err.mat repind。该summary.simex将包含repind的。
值----------Value----------
参数:coefficient
the corrected coefficients of the AFT model
的校正系数的AFT模型
参数:se
the standard deviation of each coefficient
每个系数的标准偏差
参数:pvalue
the p-value for the hypothesis of that coefficient equal zero
该系数为零的假设的p-值
参数:scalreg
the estimate of the scale
估计的规模
参数:theta
the estimates for every B and lambda
估计每个B和lambda
参数:lambda
the vector of lambdas for which the simulation step should be done
模拟步骤应做的矢量的lambda表达式
参数:B
the number of simulated samples for the simulation step.
模拟步骤的模拟样本的数目。
参数:formula
the model to be fitted in the survreg function
该模型将安装在survreg功能
参数:err.mat
the covariance matrix of the variables with measurement error
变量与测量误差的协方差矩阵的
参数:repind
the list contiains the names of the repeat measument variables
列表contiains重复流速 - 变量的名称
参数:extrapolation
the extrapolation method: linear ,quadratic are implemented (first 4 letters are enough)
外推法:线性,二次实施(第4个字母是足够的)
参数:SIMEXvariable
the vector contains the names of the variables with meansurement error
该向量含有的变量与meansurement错误的名称
(作者)----------Author(s)----------
Juan Xiong, Wenqing He and Grace Y. Yi
参考文献----------References----------
R-project.org/package=mvtnorm.
参见----------See Also----------
survreg, plotsimexaft
survreg,plotsimexaft
实例----------Examples----------
library("simexaft")
data("BHS")
dataset <- BHS
dataset$SBP <- log(dataset$SBP - 50)
###Naive AFT approach[##朴素AFT方法]
formula <- Surv(SURVTIME,DTHCENS) ~ SBP + CHOL + AGE + BMI + SMOKE1 + SMOKE2
out1 <- survreg(formula = formula, data = dataset, dist = "weibull")
summary(out1)
###fit a AFT model with quadratic extrapolation[##适合AFT与二次外推模型]
set.seed(120)
ind <- c("SBP", "CHOL")
err.mat <- diag(rep(0.5625, 2))
out2 <- simexaft(formula = formula, data = dataset, SIMEXvariable = ind,
repeated = FALSE, repind = list(), err.mat = err.mat, B = 50,
lambda = seq(0, 2, 0.1),extrapolation = "quadratic", dist = "weibull")
summary(out2)
#################### repeated measurements #################################[###################重复测量,############################# ####]
data("rhDNase")
###true model[真实的模型##]
rhDNase$fev.ave <- (rhDNase$fev + rhDNase$fev2)/2
output1 <- survreg(Surv(time2, status) ~ trt + fev.ave, data = rhDNase,
dist = "weibull")
summary(output1)
####sensitive analysis#####[########敏感性分析]
set.seed(120)
fev.error <- rhDNase$fev + rnorm(length(rhDNase$fev), mean = 0,
sd = 0.15 * sd(rhDNase$fev))
fev.error2 <- rhDNase$fev2 + rnorm(length(rhDNase$fev2),mean = 0,
sd = 0.15 * sd(rhDNase$fev2))
dataset2 <- cbind(rhDNase[, c("time2", "status", "trt")], fev.error, fev.error2)
formula <- Surv(time2, status) ~ trt + fev.error
ind <- "fev.error"
########naive model using the average FEV value####################[模型中使用的平均容积值###########################幼稚]
fev.error.c <- (fev.error + fev.error2)/2
output2 <- survreg(Surv(time2, status) ~ trt + fev.error.c, data = rhDNase,
dist = "weibull")
summary(output2)
######use simexaft and apply the quadratic extrapolation######[#####使用simexaft######和应用二次外推]
formula <- Surv(time2, status) ~ trt + fev.error
output3 <- simexaft(formula = formula, data = dataset2, SIMEXvariable = ind,
repeated=TRUE,repind=list(c("fev.error", "fev.error2")), err.mat=NULL,
B=50, lambda=seq(0,2, 0.1), extrapolation="quadratic", dist="weibull")
summary(output3)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|