PDP(Sim.DiffProc)
PDP()所属R语言包:Sim.DiffProc
Creating Pearson Diffusions Process (by Milstein Scheme)
创建皮尔逊扩散的过程(米尔斯坦计划)
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Simulation the pearson diffusions process by milstein scheme.
模拟Milstein方法的Pearson扩散过程。
用法----------Usage----------
PDP(N, M, t0, T, x0, theta, mu, a, b, c, output = FALSE)
参数----------Arguments----------
参数:N
size of process.
大小的处理。
参数:M
number of trajectories.
的轨迹数。
参数:t0
initial time.
初始时间。
参数:T
final time.
最后的时间。
参数:x0
initial value of the process at time t0.
初始值的过程中,在时间t0。
参数:theta
constant positive.
恒定的正。
参数:mu
constant.
不变。
参数:a
constant.
不变。
参数:b
constant.
不变。
参数:c
constant.
不变。
参数:output
if output = TRUE write a output to an Excel (.csv).
如果output = TRUE写的output到Excel(CSV)。
Details
详细信息----------Details----------
A class that further generalizes the Ornstein-Uhlenbeck and Cox-Ingersoll-Ross processes is the class of Pearson diffusion, the pearson diffusions process is the solution to the stochastic differential equation :
A类,进一步推广奥恩斯坦-Uhlenbeck和考克斯,英格索尔 - 罗斯过程是类皮尔逊扩散的,皮尔逊扩散的过程是解决方案的随机微分方程:
With -theta *(X(t)-mu) :drift coefficient and sqrt( 2*theta*(a*X(t)^2 + b *X(t)+ c)) :diffusion coefficient, W(t) is Wiener process, discretization dt = (T-t0)/N.
-theta *(X(t)-mu) :drift coefficient和sqrt( 2*theta*(a*X(t)^2 + b *X(t)+ c)) :diffusion coefficient,W(t)是维纳过程,离散dt = (T-t0)/N。
With theta > 0 and a, b, and c such that the diffusion coefficient is well-defined i.e., the square root can be extracted for all the values of the state space of X(t).
theta > 0和a,b,并c,扩散系数的定义,即,平方根,可提取的所有值的状态空间X(t)。
When the diffusion coefficient = sqrt(2*theta*c) i.e, (a=0,b=0), we recover the Ornstein-Uhlenbeck process.
当diffusion coefficient = sqrt(2*theta*c),即,(a=0,b=0),我们恢复Ornstein-Uhlenbeck过程。
For diffusion coefficient = sqrt(2*theta*X(t)) and 0 < mu <= 1 i.e, (a=0,b=1,c=0), we obtain the Cox-Ingersoll-Ross process, and if mu > 1 the invariant distribution is a Gamma law with scale parameter 1 and shape parameter mu.
diffusion coefficient = sqrt(2*theta*X(t))和0 < mu <= 1即(a=0,b=1,c=0),我们获得了考克斯,英格索尔 - 罗斯过程,并mu > 1不变分布是一个Gamma law尺度参数1和形状参数mu。
For a > 0 and diffusion coefficient = sqrt(2*theta*a*(X(t)^2+1)) i.e, (b=0,c=a), the invariant distribution always exists on the real line, and for mu = 0 the invariant distribution is a scaled t distribution with v=(1+a^(-1)) degrees of freedom and scale parameter v^(-0.5), while for mu =! 0 the distribution is a form of skewed t distribution that is called Pearson type IV distribution.
对于a > 0和diffusion coefficient = sqrt(2*theta*a*(X(t)^2+1))即(b=0,c=a),不变分布总是存在的实线,和mu = 0不变分布的比例t distribution的 v=(1+a^(-1))程度的自由和尺度参数v^(-0.5),而mu =! 0的分布是一种扭曲的t distribution,被称为“皮尔逊型IV分布。
For a > 0, mu > 0, and diffusion coefficient = sqrt(2*theta*a*X(t)^2) i.e, (b=0,c=0), the distribution is defined on the positive half line and it is an inverse Gamma distribution with shape parameter 1 + a^-1 and scale parameter a/mu.
对于a > 0,mu > 0和diffusion coefficient = sqrt(2*theta*a*X(t)^2),即(b=0,c=0),分布上定义的正半线,它是一个inverse Gamma distribution带形状参数的 X>和尺度参数1 + a^-1。
For a > 0, mu >= a, and diffusion coefficient = sqrt(2*theta*a*X(t)*(X(t)+1)) i.e, (b=a,c=0), the invariant distribution is the scaled F distribution with (2*mu)/a and (2/a)+2 degrees of freedom and scale parameter mu / (a+1). For 0 < mu < 1, some reflecting conditions on the boundaries are also needed.
a > 0,mu >= a和diffusion coefficient = sqrt(2*theta*a*X(t)*(X(t)+1))即(b=a,c=0),不变分布的刻度F distribution与(2*mu)/a和(2/a)+2的度的自由和尺度参数mu / (a+1)。对于0 < mu < 1,一些反射边界上的条件下,也需要。
If a < 0 and mu > 0 are such that min(mu,1-mu) >= -a and diffusion coefficient = sqrt(2*theta*a*X(t)*(X(t)-1)) i.e, (b=-a,c=0), the invariant distribution exists on the interval [0,1] and is a Beta distribution with parameters -mu/a and (mu-1)/a.
如果a < 0和mu > 0是min(mu,1-mu) >= -a和diffusion coefficient = sqrt(2*theta*a*X(t)*(X(t)-1))即(b=-a,c=0),不变分布上存在的时间间隔[0,1]和一个 Beta distribution参数-mu/a和(mu-1)/a。
值----------Value----------
data.frame(time,x) and plot of process.
数据框(时间,x)和图的过程。
(作者)----------Author(s)----------
Boukhetala Kamal, Guidoum Arsalane.
参见----------See Also----------
CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, JDP Jacobi Diffusion Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.
CEV常数方差模型的弹性,CIR考克斯,英格索尔 - 罗斯模型,CIRhy改性的CIR和双曲过程,CKLS陈Karolyi,Longstaff·桑德斯模型, X>双势阱模型,DWP布莱克 - 斯科尔斯模型,GBM的Hull-White/Vasicek模式,HWV逆费勒平方根模型,INFSR雅可比扩散过程,JDP径向Ornstein-Uhlenbeck过程,ROU扩散桥模型,diffBridge SDE模拟数值解。
实例----------Examples----------
## example 1[#示例1]
## theta = 5, mu = 10, (a=0,b=0,c=0.5)[#θ= 5亩= 10,(A = 0,B = 0,C = 0.5)]
## dX(t) = -5 *(X(t)-10)*dt + sqrt( 2*5*0.5)* dW(t)[#DX(T)= -5 *(X(T)-10)* DT + SQRT(2 * 5 * 0.5)* DW(T)]
PDP(N=1000,M=1,T=1,t0=0,x0=1,theta=5,mu=10,a=0,b=0,c=0.5)
## example 2[#示例2]
## theta = 0.1, mu = 0.25, (a=0,b=1,c=0)[#θ= 0.1亩= 0.25,(A = 0,B = 1,C = 0)]
## dX(t) = -0.1 *(X(t)-0.25)*dt + sqrt( 2*0.1*X(t))* dW(t)[#DX(T)= -0.1 *(X(t)的-0.25)* DT + SQRT(2 * 0.1 * X(T))* DW(T)]
PDP(N=1000,M=1,T=1,t0=0,x0=1,theta=0.1,mu=0.25,a=0,b=1,c=0)
## example 3[#示例3]
## theta = 0.1, mu = 1, (a=2,b=0,c=2)[#THETA = 0.1亩= 1,(A = 2,B = 0,C = 2)]
## dX(t) = -0.1*(X(t)-1)*dt + sqrt( 2*0.1*(2*X(t)^2+2))* dW(t)[#DX(T)= -0.1 *(X(T)-1)* DT + SQRT(2 * 0.1 *(2 * X(T)^ 2 +2))* DW(T)]
PDP(N=1000,M=1,T=1,t0=0,x0=1,theta=0.1,mu=1,a=2,b=0,c=2)
## example 4[#示例4]
## theta = 0.1, mu = 1, (a=2,b=0,c=0)[#THETA = 0.1亩= 1,(A = 2,B = 0,C = 0)]
## dX(t) = -0.1*(X(t)-1)*dt + sqrt( 2*0.1*2*X(t)^2)* dW(t)[#DX(T)= -0.1 *(X(T)-1)* DT + SQRT(2 * 0.1 * 2 * X(T)^ 2)* DW(T)]
PDP(N=1000,M=1,T=1,t0=0,x0=1,theta=0.1,mu=1,a=2,b=0,c=0)
## example 5[#示例5]
## theta = 0.1, mu = 3, (a=2,b=2,c=0)[#θ= 0.1亩= 3(A = 2,B = 2,C = 0)]
## dX(t) = -0.1*(X(t)-3)*dt + sqrt( 2*0.1*(2*X(t)^2+2*X(t)))* dW(t)[#DX(T)= -0.1 *(X(T)-3)* DT + SQRT(2 * 0.1 *(2 * X(T)^ 2 +2 * X(T)))* DW(T)]
PDP(N=1000,M=1,T=1,t0=0,x0=0.1,theta=0.1,mu=3,a=2,b=2,c=0)
## example 6[#示例6]
## theta = 0.1, mu = 0.5, (a=-1,b=1,c=0)[#θ= 0.1亩= 0.5(A = -1,B = 1,C = 0)]
## dX(t) = -0.1*(X(t)-0.5)*dt + sqrt( 2*0.1*(-X(t)^2+X(t)))* dW(t)[#DX(T)= -0.1(T)*(X -0.5)* DT + SQRT(2 * 0.1 *(-X(T)^ 2 + X(T)))* DW(T)]
PDP(N=1000,M=1,T=1,t0=0,x0=0.1,theta=0.1,mu=0.5,a=-1,b=1,c=0)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|