Kern_general(Sim.DiffProc)
Kern_general()所属R语言包:Sim.DiffProc
Adjustment the Density of Random Variable by Kernel Methods
调整密度随机变量的核方法
译者:生物统计家园网 机器人LoveR
描述----------Description----------
kernel density estimates. Its default method does so with the given kernel and bandwidth for univariate observations, and adjusted your density with distributions.
内核密度估计。它的默认方法,这样做的内核和带宽进行单因素观察,并调整您的密度与分布。
用法----------Usage----------
Kern_general(Data, bw, k, Law = c("exp", "GAmma", "chisq", "Beta",
"fisher", "student", "weibull", "Normlog", "Norm"))
参数----------Arguments----------
参数:Data
a numeric vector of the observed values.
所观察到的值的一个数值向量。
参数:bw
the smoothing bandwidth to be used. The kernels are scaled such that this is the standard deviation of the smoothing kernel. bw=c('Irt','scott','Ucv','Bcv','SJ') or manual, see details bw.nrd0
要使用的平滑带宽。内核缩放等,这是标准偏差的平滑核。 BW = C(IRT,SCOTT,的UCV,的BCV,“SJ”)或手动,详见bw.nrd0
参数:k
a character string giving the smoothing kernel to be used. This must be one of "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" or "optcosine"
一个字符的字符串,给要使用的图像平滑用核。这必须是一个“高斯”,“矩形”,“三角形”,“叶帕涅奇尼科夫”,“biweight”,“余弦”或“optcosine的”
参数:Law
distribution function with Adjusted. see details Distributions (R >= 2.12.1)
分布函数的调整。见细节Distributions(R> = 2.12.1)
Details
详细信息----------Details----------
see details density
详情请参阅density
值----------Value----------
plot.density estimated with Adjustment.
plot.density估计与调整。
注意----------Note----------
bw='Irt' ===> bw= bw.nrd0(X), implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel density estimator.
BW =“IRT”===> BW = bw.nrd0(X),选择一个高斯核密度估计的带宽,实现了一个拇指规则的。
bw='scott' ===> bw= bw.nrd(X) ,is the more common variation given by Scott.
BW =SCOTT=> BW = bw.nrd(X),是较常见的变化,由Scott。
bw='Ucv' ===> bw= bw.ucv(X) , implement unbiased cross-validation.
BW =UCV===> BW = bw.ucv(X),实现公正的交叉验证。
bw='Bcv' ===> bw= bw.bcv(X) , implement biased cross-validation.
BW =BCV===> BW = bw.bcv(X),实现偏见的交叉验证。
bw='SJ' ===> bw= bw.SJ(X) , implements the methods of Sheather & Jones.
BW =“SJ”===> BW = bw.SJ(X)的方法,实现了的Sheather和琼斯。
Choose your best distribution with minimum AIC.
选择您以最小的AIC的最佳分配。
(作者)----------Author(s)----------
Boukhetala Kamal, Guidoum Arsalane.
参见----------See Also----------
fctgeneral empirical distribution,hist_general Histograms Methods.
fctgeneral经验分布,hist_general直方图的方法。
实例----------Examples----------
X <- rexp(1000,1)
par(mfrow=c(2,2))
Kern_general(Data=X, bw='Irt', k="gaussian", Law = c("exp"))
Kern_general(Data=X, bw='scott', k="gaussian", Law = c("exp"))
Kern_general(Data=X, bw='Ucv', k="gaussian", Law = c("exp"))
Kern_general(Data=X, bw=0.3, k="gaussian", Law = c("exp"))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|