找回密码
 注册
查看: 227|回复: 0

R语言 sft包 micTest()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 01:44:23 | 显示全部楼层 |阅读模式
micTest(sft)
micTest()所属R语言包:sft

                                         Test of the Mean Interaction Contrast
                                         测试的平均互动对比度

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Performs either an Adjusted Rank Transform or ANOVA test for an interaction at the mean level.
执行调整后的排名变换或ANOVA测试互动的平均水平。


用法----------Usage----------


micTest(HH, HL, LH, LL, ART=TRUE)



参数----------Arguments----------

参数:HH
Response times from the High–High condition.
响应时间从高 - 高的条件。


参数:HL
Response times from the High–Low condition.
响应时间从高至低的状况。


参数:LH
Response times from the Low–High condition.
响应时间从低到高的状态。


参数:LL
Response times from the Low–Low condition.
从低 - 低状态下的响应时间。


参数:ART
If TRUE, use the adjusted rank transform test.  If FALSE use ANOVA.
如果是TRUE,使用调整后的排名变换的测试。如果使用虚假ANOVA。


Details

详细信息----------Details----------

The mean interaction contrast (MIC) indicates the architecture of a process.  Serial processes result in MIC equal to zero.  Parallel-OR and Coactive process have a positive MIC.  Parallel-AND process have a negative MIC.  A test for a significant MIC can be done with a nonparametric adjusted rank transform test (described below) or an ANOVA.
的平均的相互作用对比度(MIC)表示的结构的一个过程。串行进程的结果在MIC等于零。并联或与共同作用的过程,有一个积极的MIC。并行和过程有负面的MIC。的重大MIC可以做的测试与调整后的非参数秩变换测试(如下所述)或方差分析。

The Adjusted Rank Transform is a nonparametric test for an interaction between two discrete variables.  The test is carried out by first subtracting the mean effect of the salience level on each channel.  Suppose,  m_{H,\cdot} = E[RT; Level of Channel 1 is Fast], m_{L,\cdot} = E[RT; Level of Channel 1 is Slow], m_{\cdot, H} = E[RT; Level of Channel 2 is Fast], m_{\cdot, L} = E[RT; Level of Channel 2 is Slow]. Then for each response time from the fast–fast condition, m_{H, \cdot} and m_{\cdot,H} are subtracted.  Likewise, for each of the other conditions, the appropriate m is subtracted.  Next, each mean subtracted response time is replaced with its rank across all conditions (e.g., the fastest time of all conditions would be replaced with a 1).  In this implementation, tied response times are assigned using the average rank.  Finally, a standard ANOVA on the ranks is done on the ranks and the p-value of that test is returned.  This test was recommended by Sawilowsky (1990) based on a survey of a number of nonparametric tests for interactions.  He credits Reinach (1965) for first developing the test.
调整后的排名变换是一种非参数检验,两个独立的变量之间的相互作用。该测试是通过先减去在每个通道上的显着性水平的平均效果。假设,m_{H,\cdot} =E [RT通道1的水平是快速,m_{L,\cdot} =E [RT通道1的水平速度很慢,m_{\cdot, H} =E [RT通道2的水平快],m_{\cdot, L} =E [RT通道2级的速度很慢]。然后,对于每个响应时间快 - 快条件,m_{H, \cdot}和m_{\cdot,H}中减去。同样地,对于每个其他条件,适当的m减去。接下来,每个均值减去响应时间被替换其排名在所有条件下(例如,在最快的时间将被替换的所有条件,用1)。在此实现中,并列的响应时间被分配使用的平均等级。最后,标准方差分析的职级的职级,p值,则返回该测试。推荐Sawilowsky(1990)这个测试是根据一项调查显示,一些非参数检验的互动。他相信雷纳克(1965年),第一个开发测试。


值----------Value----------


参数:statistic
The value of the test statistic from an ART or ANOVA.
从艺术或ANOVA检验统计量的值。


参数:p.val
The p.value of the test statistic.
p.value的检验统计量。


(作者)----------Author(s)----------



Joe Houpt <jhoupt@indiana.edu>




参考文献----------References----------





实例----------Examples----------


T1.h <- rexp(50, .2)
T1.l <- rexp(50, .1)
T2.h <- rexp(50, .21)
T2.l <- rexp(50, .11)

Serial.hh <- T1.h + T2.h
Serial.hl <- T1.h + T2.l
Serial.lh <- T1.l + T2.h
Serial.ll <- T1.l + T2.l
micTest(HH=Serial.hh, HL=Serial.hl, LH=Serial.lh, LL=Serial.ll)

Parallel.hh <- pmax(T1.h, T2.h)
Parallel.hl <- pmax(T1.h, T2.l)
Parallel.lh <- pmax(T1.l, T2.h)
Parallel.ll <- pmax(T1.l, T2.l)
micTest(HH=Parallel.hh, HL=Parallel.hl, LH=Parallel.lh, LL=Parallel.ll, ART=TRUE)


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-21 17:01 , Processed in 0.024160 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表