找回密码
 注册
查看: 324|回复: 0

R语言 seqCBS包 ScanCBS()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 01:12:14 | 显示全部楼层 |阅读模式
ScanCBS(seqCBS)
ScanCBS()所属R语言包:seqCBS

                                         Main CBS Algorithm for Change-Point Detection
                                         主要CBS变化点检测算法

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This is the main algorithm. It teratively scans for window of arbitrary size where the case and control read depths are different. It continues until a stopping criterion based on mBIC, maximum number of cut, and the statistic at the current segment.
这是主要的算法。 teratively扫描任意大小的窗口的情况下,控制读的深度是不同的。它继续的MBIC,最大数量的切割,并在当前段的统计的基础上直到停止标准。


用法----------Usage----------


ScanCBS(cases, controls, statistic = "binomial", grid.size = "auto", takeN = 5, maxNCut = 100, minStat = 0, alpha=0.05, verbose = FALSE, timing = TRUE)



参数----------Arguments----------

参数:cases
A numeric vector of the case/tumor reads
/肿瘤的情况下读取一个数值向量


参数:controls
A numeric vector of the control/normal reads
一个数字矢量控制/正常读取


参数:statistic
The statistic to be used. Can be 'binomial','rabinowitz' or 'normal'.
要使用的统计量。可以“二项式”,“拉比诺维茨”或“正常”。


参数:grid.size
The set of grid sizes for the iterative search. An automatic default can be computed.
迭代搜索网格尺寸的设定。自动默认值可以计算出来。


参数:takeN
The number of candidate change points to be added to a temporary set at each grid size
候选变化点的数目被添加到一个临时的设置在每个网格的大小


参数:maxNCut
The maximum number of segmentation steps to perform
的最大数目的分割步骤执行


参数:minStat
The minimum statistic value required to continue the segmentation. Default 0 as this criterion being ignored.
需要继续分割的最小统计值。默认值0被忽略,因为这一标准。


参数:alpha
Significance level for testing whether each segment is a gain (relative CN > 1) or loss (relative CN < 1). The method internally corrects for multiple testing.
用于测试是否每个部分的收益(相对CN> 1)或损失(相对于CN <1)的显着性水平。该方法在内部纠正多个测试。


参数:verbose
If TRUE, then will print much information on each segmentation. For diagnostics only.
如果TRUE,然后将打印在每个分割多的信息。只有进行诊断。


参数:timing
If TRUE, perform a timing of this algorithm, include in the output data file.
如果TRUE,执行该算法的定时,包括在输出数据文件。


Details

详细信息----------Details----------

This algorithm is an use of the Circular Binary Segmentation method. It continues to segment the reads and consider the resulting child regions for further segmentation. It keeps track of the most promising cut in each children, and only the child region with the most significant segmentation is further cut, yielding more children. This is repeated until stopping criteria are met. The three types of statistics are by the use of exact binomial likelihood ('binomial'), score statistic ('rabinowitz') or using normal approximation to the binomial ('normal').
该算法是一种利用的循环二元分割方法。继续段的读取,并考虑进一步细分的子区域。它跟踪每个孩子最有前途的削减,最重要的分割子区域进一步降低,产生更多的孩子。这被重复,直到满足停止标准。这三种类型的统计信息,是由使用的确切的二项式似然(二项式),得分统计(拉比诺维茨)或使用正常的近似的二项式(“正常”)。


值----------Value----------

<table summary="R valueblock"> <tr valign="top"><td>tauHat </td> <td> The change points called</td></tr> <tr valign="top"><td>statHat </td> <td> A matrix containing the statistic and its segmentation for the model called, in the order of the segmentation. The columns are break points in genomic scale (1,2), read index scale (3,4), value of test statistic (5), the parent segment in genomic scale (6,7), and mBIC of the model (8).</td></tr> <tr valign="top"><td>relCN </td> <td> The relative CN computed for each segment between change points</td></tr> <tr valign="top"><td>relGainLoss </td> <td> Test result of whether each segment is a gain, loss, or normal</td></tr> <tr valign="top"><td>timingRes </td> <td> A list containing the result of the timing of this algorithm</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD>tauHat  </ TD> <TD>的变化点称为</ TD> </ TR> <TR VALIGN =“顶部“> <TD> statHat  </ TD> <td>一个矩阵的统计和分割的模型,顺序的分割。列是在基因组规模(1,2)的中断点,读取基准刻度盘(3,4),检验统计量的值(5),在基因组规模父段(6,7),并和MBIC的模型(8 )</ TD> </ TR> <tr valign="top"> <TD>relCN  </ TD> <TD>相对CN计算,各段之间的变化点</ TD> </ TR > <tr valign="top"> <TD> relGainLoss  </ TD> <TD>测试结果是否每个分部的收益,损失或正常</ TD> </ TR> <TR VALIGN = “顶”> <TD> timingRes  </ TD> <td>一个列表,其中包含的时间,该算法的结果</ TD> </ TR> </表>


(作者)----------Author(s)----------



Jeremy J. Shen




参考文献----------References----------

D. Rabinowitz, IMS Lecture Notes - Monograph Series, Vol. 23, 1994

参见----------See Also----------

ScanIterateGrid, ScanBIC, relCNComp, getAutoGridSize
ScanIterateGrid,ScanBIC,relCNComp,getAutoGridSize

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-20 04:38 , Processed in 0.034644 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表