twoAC(sensR)
twoAC()所属R语言包:sensR
2-AC Discrimination Protocol
2-AC歧视协议
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Computes estimates and standard errors of d-prime and tau for the two alternative (2-AC) protocol. A confidence interval and significance test for d-prime is also provided. The 2-AC protocol is equivalent to a 2-AFC protocol with a "no-difference" option.
计算估计和标准错误的D-黄金和tau(2-AC)两种可供选择的协议。还提供了D-黄金置信区间和显着性检验。 2-AC协议是相当于一个2-AFC协议与一个“无差异”选项。
用法----------Usage----------
twoAC(data, d.prime0 = 0, conf.level = 0.95,
statistic = c("likelihood", "Wald"),
alternative = c("two.sided", "less", "greater"), ...)
参数----------Arguments----------
参数:data
a non-negative numeric vector of length 3 with the number of observations in the three response categories. If the third element is larger than the first element, then the estimate of d-prime will be positive.
的长度为3的三个回应组别中的观测值的数目与一个非负的数值向量。如果第三个元素是大于第一个元素,则d的素数的估计将是正的。
参数:d.prime0
the value of d-prime under the null hypothesis for the significance test.
D-黄金的显着性检验的零假设下的价值。
参数:conf.level
the confidence level.
的置信水平。
参数:statistic
the statistic to use for confidence level and significance test.
使用的统计置信水平和显着性检验。
参数:alternative
the type of alternative hypothesis.
的类型,备择假设。
参数:...
not currently used.
当前未使用。
Details
详细信息----------Details----------
confint, profile, logLik, vcov, and print methods are implemented for twoAC objects.
confint,profile,logLik,vcov和printtwoAC对象方法的实现。
Power computations for the 2-AC protocol is implemented in twoACpwr.
功率计算为2-AC协议实现在twoACpwr。
值----------Value----------
An object of class twoAC with elements <table summary="R valueblock"> <tr valign="top"><td>coefficients</td> <td> 2 by 2 coefficient matrix with estimates and standard errors of d-prime and tau. If the variance-covariance matrix of the parameters is not defined, the standard errors are NA. </td></tr> <tr valign="top"><td>vcov</td> <td> variance-covariance matrix of the parameter estimates. Only present if defined for the supplied data. </td></tr> <tr valign="top"><td>data</td> <td> the data supplied to the function. </td></tr> <tr valign="top"><td>call</td> <td> the matched call. </td></tr> <tr valign="top"><td>logLik</td> <td> the value of the log-likelihood at the maximum likelihood estimates. </td></tr> <tr valign="top"><td>alternative</td> <td> the name of the alternative hypothesis for the significance test.</td></tr> <tr valign="top"><td>statistic</td> <td> the name of the test statistic used for the significance test.</td></tr> <tr valign="top"><td>conf.level</td> <td> the confidence level for the confidence interval for d-prime.</td></tr> <tr valign="top"><td>d.prime0</td> <td> the value of d-prime under the null hypothesis in the significance test.</td></tr> <tr valign="top"><td>p.value</td> <td> p-value of the significance test.</td></tr> <tr valign="top"><td>confint</td> <td> two-sided condfidence interval for d-prime. This is only available if the standard errors are defined, which may happen in boundary cases. Use profile and confint methods to get confidence intervals instead; see the examples.</td></tr> </table>
一个对象的类twoAC的元素表summary="R valueblock"> <tr valign="top"> <TD> coefficients </ TD> <TD> 2的系数矩阵的估计D-黄金和tau和标准错误。如果没有被定义的参数的方差 - 协方差矩阵,标准误差是NA。 </ TD> </ TR> <tr valign="top"> <TD> vcov </ TD> <TD>方差 - 协方差矩阵的参数估计。如果提供的数据定义。 </ TD> </ TR> <tr valign="top"> <TD>data</ TD> <TD>提供的数据的功能。 </ TD> </ TR> <tr valign="top"> <TD>call</ TD> <TD>匹配的呼叫。 </ TD> </ TR> <tr valign="top"> <TD> logLik</ TD> <TD>最大似然估计的对数似然值。 </ TD> </ TR> <tr valign="top"> <TD>alternative</ TD> <TD>的名称替代假设的显着性检验。</ TD> </ TR> <tr valign="top"> <TD> statistic </ TD> <TD>检验统计量的显着性检验的名称。</ TD> </ TR> <TR VALIGN =“顶” > <TD> conf.level </ TD> <TD>的置信水平的置信区间为D-黄金。</ TD> </ TR> <tr valign="top"> <TD><X > </ TD> <TD>值的显着性检验的零假设下的D-黄金。</ TD> </ TR> <tr valign="top"> <TD>d.prime0</ TD> <TD>的显着性检验的p值</ TD> </ TR> <tr valign="top"> <TD>p.value </ TD> <TD>双面condfidence的时间间隔D-贷。如果这是唯一可用的标准误差的定义,可能发生的边界情况。使用confint和profile方法得到的置信区间,而不是看到的例子。</ TD> </ TR> </表>
(作者)----------Author(s)----------
Rune Haubo B Christensen
参考文献----------References----------
Christensen R.H.B., Lee H-S and Brockhoff P.B. (2011). Estimation of the Thurstonian model for the 2-AC protocol. Submitted to Food Quality and Preference.
参见----------See Also----------
clm2twoAC, twoACpwr
clm2twoAC,twoACpwr
实例----------Examples----------
## Simple:[#简单:]
fit <- twoAC(c(2,2,6))
fit
## Typical discrimination-difference test: [#典型的歧视差测试:]
(fit <- twoAC(data = c(2, 5, 8), d.prime0 = 0, alternative = "greater"))
## Typical discrimination-similarity test: [#典型的歧视相似的测试:]
(fit <- twoAC(data = c(15, 15, 20), d.prime0 = .5, alternative = "less"))
## Typical preference-difference test:[#典型的偏好差异的测试:]
(fit <- twoAC(data = c(3, 5, 12), d.prime0 = 0,
alternative = "two.sided"))
## Typical preference (non-)inferiority test:[#典型偏好(非)劣性检验:]
(fit <- twoAC(data = c(3, 5, 12), d.prime0 = 0,
alternative = "greater"))
## For preference equivalence tests (two-sided) use CI with alpha/2:[#偏好等价测试(双面)与α/ 2使用CI:]
## declare equivalence at the 5% level if 90% CI does not contain,[#申报等价的,在5%的水平,如果不包含90%CI,]
## e.g, -1 or 1: [#例如,-1或1:]
(fit <- twoAC(data = c(15, 10, 10), d.prime0 = 0, conf.level = .90))
## The var-cov matrix and standard errors of the parameters are not[#VAR病毒的矩阵和参数的标准误差是不]
## defined in all situations. If standard errors are not[#定义在所有情况下。如果标准错误是不]
## defined, then confidence intervals are not provided directly:[#define定义,然后置信区间不提供直接:]
(fit <- twoAC(c(5, 0, 15)))
## We may use profile and confint methods to get confidence intervals[#我们可以使用配置文件和confint方法得到的置信区间]
## never the less: [#从来不:]
pr <- profile(fit, range = c(-1, 3))
confint(pr)
plot(pr)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|