SDT(sensR)
SDT()所属R语言包:sensR
Signal Detection Theory Computation of d-prime
信号检测理论计算的D-贷
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The function computes d-prime for any 2 x J table where J >= 2 for the "yes–no" or "A-Not A" experiment using the Signal Detection Theory (SDT) algorithm to compute J-1 d-prime's. The algorithm is also called the "empirical probit transform". The function also provides the "logit" counterpart.
年富力强的任何2个J表函数计算D-J> = 2“是”或“A-A”实验中使用的信号检测论(SDT)算法来计算J-1 D-Prime的。该算法也被称为“经验概率改造”。该功能还提供了“罗吉特”对应。
用法----------Usage----------
SDT(tab, method = c("probit", "logit"))
参数----------Arguments----------
参数:tab
A 2 x J table with true class relation in rows (only two true classes) and the J-class response in columns
A 2个J表与真正的阶级关系中的行(只有两个真正的类)和J-级响应在列
参数:method
should the empirical probit or logit transform be computed?
的经验概率或罗吉特变换计算?
值----------Value----------
A (J-1) x 3 matrix. The first two columns contains the z-transform of the Hit rate and the False Alarm rate respectively—ready to plot along with the empirical ROC curve. The third column contains the estimated d-primes.
A(J-1)×3的矩阵。前两列中包含的z变换的命中率和虚警率分别绘制随着经验的ROC曲线。第三列估计的d素数。
(作者)----------Author(s)----------
Rune Haubo B Christensen
参考文献----------References----------
实例----------Examples----------
### Design table:[##设计表:]
## 8 "yes"-responses to no-samples[#8“是”无样品]
## 1 "yes"-responses to yes-samples[#1“是”的回答为“是”样本]
## 17 "no"-response to no-samples[#17“没有”无样品]
## 24 "no"-responses to yes-samples[#24“没有”的反应是样本]
## Note that response-class is columnwise and true-class is rowwise. [#需要注意的是响应类是按列和真实,类是rowwise的。]
(mat <- matrix(c(8, 17, 1, 24), 2, byrow = TRUE))
SDT(mat, "logit")
SDT(mat, "probit")
## compare to AnotA():[#比较AnotA():]
AnotA(8, 25, 1, 25)
## Multi-response-class example (odor example from MacMillan and[多响应类的例子(麦克米兰和气味例如,从]
## Creelman, 2005)[#2005年克里尔曼,)]
(odor <- matrix(c(112, 112, 72, 53, 22, 4, 7, 38, 50, 117, 101, 62), 2,
byrow = TRUE))
obj <- SDT(odor)
ROC(obj[3,3])
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|