找回密码
 注册
查看: 466|回复: 0

R语言 semTools包 longInvariance()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 00:44:49 | 显示全部楼层 |阅读模式
longInvariance(semTools)
longInvariance()所属R语言包:semTools

                                         Measurement Invariance Tests Within Person
                                         在人的测量不变性测试

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Testing measurement invariance across timepoints (longitudinal) or any context involving the use of the same scale in one case (e.g., a dyad case with husband and wife answering the same scale). The measurement invariance uses a typical sequence of model comparison tests. This function currently works with only one scale.
跨越时间点(纵向)或任何情况下,在一种情况下(例如,对子的情况下,丈夫和妻子回答同样的规模)涉及使用相同规模的测试测量不变性。测量不变性使用一个典型序列模型的对比测试。此功能目前只适用于一个规模。


用法----------Usage----------


longInvariance(model, varList, auto = "all", constrainAuto = FALSE,
fixed.x = TRUE, std.lv = FALSE, group=NULL, group.equal="",
group.partial="", warn=TRUE, debug=FALSE, strict = FALSE, quiet = FALSE,
...)



参数----------Arguments----------

参数:model
lavaan syntax or parameter table
lavaan语法或参数表


参数:varList
A list containing indicator names of factors used in the invariance testing, such as the list that the first element is the vector of indicator names in the first timepoint and the second element is the vector of indicator names in the second timepoint. The order of indicator names should be the same (but measured in different times or different units).
列表包含指示名在不变性的测试,使用的因素,如列表的第一个元素是在第一时间点的矢量的指标名称和第二元件是在所述第二时间点的指标名称矢量。指标名称的顺序应该是相同的(但在不同的时间或不同的单位测量的)。


参数:auto
The order of autocorrelation on the measurement errors on the similar items across factor (e.g., Item 1 in Time 1 and Time 2). If 0 is specified, the autocorrelation will be not imposed. If 1 is specified, the autocorrelation will imposed for the adjacent factor listed in varList. The maximum number can be specified is the number of factors specified minus 1. If "all" is specified, the maximum number of order will be used.
为了自相关的测量误差,类似的项目横跨因素(例如,在时间1和时间2第1项)。如果指定0,将不征收,自相关。如果指定1,自相关强加在varList上市相邻的因素。可以指定的最大数目是减1指定的数量的因素。如果"all"指定的最大数量的订单将被使用。


参数:constrainAuto
If TRUE, the function will equate the auto-covariance to be equal within the same item across factors. For example, the covariance of item 1 in time 1 and time 2 is equal to the covariance of item 1 in time 2 and time 3.
如果TRUE,该函数将等同于自协方差等于在相同的项目横跨因素。例如,在时间1和时间2是第1项中的协方差等于第1项中的协方差,在时间2和时间3。


参数:fixed.x
See lavaan.
见lavaan.


参数:std.lv
See lavaan.
见lavaan.


参数:group
See lavaan.
见lavaan.


参数:group.equal
See lavaan.
见lavaan.


参数:group.partial
See lavaan.
见lavaan.


参数:warn
See lavaan.
见lavaan.


参数:debug
See lavaan.
见lavaan.


参数:strict
If TRUE, the sequence requires "strict" invariance. See details for more information.
如果TRUE,的顺序要求“严格”的不变性。请参阅更多信息。


参数:quiet
If TRUE, a summary is printed out containing an overview of the different models that are fitted, together with some model comparison tests.
如果TRUE,总结打印出来,其中载有都配车型的不同,再加上一些模型的对比测试。


参数:...
Additional arguments in the lavaan function.
lavaan功能的其他参数。


Details

详细信息----------Details----------

If strict = FALSE, the following four models are tested in order:
如果strict = FALSE,在以下4个型号进行测试顺序为:

Model 1: configural invariance. The same factor structure is imposed on all units.
模式1:构形的不变性。各单位实行相同的因素结构。

Model 2: weak invariance. The factor loadings are constrained to be equal across units.
模式2:弱不变性。因子载荷约束的,等于跨部门。

Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across units.
模式3:强大的不变性。制约的因素负荷量和拦截跨单位是平等的。

Model 4: The factor loadings, intercepts and means are constrained to be equal across units.
模式4:等于跨部门的因子载荷,拦截和手段的制约。

Each time a more restricted model is fitted, a chi-square difference test is reported, comparing the current model with the previous one, and comparing the current model to the baseline model (Model 1). In addition, the difference in cfi is also reported (delta.cfi).
每次一个更严格的模型拟合的卡方的差异测试报告,目前的模式比较与前一,目前的模式比较基准模型(模式1)。此外,在CFI的差异也报道(delta.cfi)。

If strict = TRUE, the following five models are tested in order:
如果strict = TRUE,以下五个型号的测试,以:

Model 1: configural invariance. The same factor structure is imposed on all units.
模式1:构形的不变性。各单位实行相同的因素结构。

Model 2: weak invariance. The factor loadings are constrained to be equal across units.
模式2:弱不变性。因子载荷约束的,等于跨部门。

Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across units.
模式3:强大的不变性。制约的因素负荷量和拦截跨单位是平等的。

Model 4: strict invariance. The factor loadings, intercepts and residual variances are constrained to be equal across units.
模式4:严格的不变性。制约的因素负荷量,拦截和剩余的差异是跨单位是平等的。

Model 5: The factor loadings, intercepts, residual variances and means are constrained to be equal across units.
型号:等于跨部门的因子载荷,拦截,剩余的差异和手段的制约。

Note that if the chi-square test statistic is scaled (eg. a Satorra-Bentler or Yuan-Bentler test statistic), a special version of the chi-square difference test is used as described in http://www.statmodel.com/chidiff.shtml
请注意,如果卡方检验统计量的比例(例如,一个Satorra特勒或元特勒测试统计),卡方差异测试的一个特殊版本所描述的http://www.statmodel.com / chidiff.shtml


值----------Value----------

Invisibly, all model fits in the sequence are returned as a list.
不可见的,作为一个列表返回序列中的所有模型拟合。


(作者)----------Author(s)----------



Sunthud Pornprasertmanit (University of Kansas; <a href="mailto:psunthud@ku.edu">psunthud@ku.edu</a>); Yves Rosseel (Ghent University; <a href="mailto:Yves.Rosseel@UGent.be">Yves.Rosseel@UGent.be</a>)




参考文献----------References----------



参见----------See Also----------

measurementinvariance For the measurement invariance test between groups
measurementinvariance对于群体之间的测量不变性测试


实例----------Examples----------


model <- ' f1t1 =~ y1t1 + y2t1 + y3t1
              f1t2 =~ y1t2 + y2t2 + y3t2
                          f1t3 =~ y1t3 + y2t3 + y3t3'

# Create list of variables[创建变量列表]
var1 <- c("y1t1", "y2t1", "y3t1")
var2 <- c("y1t2", "y2t2", "y3t2")
var3 <- c("y1t3", "y2t3", "y3t3")
constrainedVar <- list(var1, var2, var3)

# Invariance of the same factor across timepoints[跨越的时间点相同的因子的不变性]
longInvariance(model, auto=1, constrainAuto=TRUE, varList=constrainedVar, data=exLong)

# Invariance of the same factor across timepoints and groups[相同的因素不同时间点和组不变性]
longInvariance(model, auto=1, constrainAuto=TRUE, varList=constrainedVar, data=exLong, group="sex", group.equal=c("loadings", "intercepts"))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-18 19:54 , Processed in 0.022400 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表