找回密码
 注册
查看: 252|回复: 0

R语言 selectMeta包 selectMeta-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 00:29:12 | 显示全部楼层 |阅读模式
selectMeta-package(selectMeta)
selectMeta-package()所属R语言包:selectMeta

                                        Estimation of weight functions in meta analysis
                                         Meta分析中的权重函数的估计

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Publication bias, the fact that studies identified for inclusion in a meta analysis do not represent all studies on the topic of interest, is commonly recognized as a threat to the validity of the results of a meta analysis. One way to explicitly model publication bias is via selection models or weighted probability distributions. For details we refer to Iyengar & Greenhouse (1998), Dear & Begg (1992),  and Rufibach (2011). In this package we provide implementations of all the weight functions proposed in these papers. The novelty in Rufibach (2011) is the proposal of a non-increasing variant of the nonparametric weight function of Dear & Begg (1992). Since virtually all parametric weight functions proposed so far in the literature  are in fact decreasing and only few studies are included in a typical meta analysis regularization by imposing monotonicity seems a sensible approach. The new approach potentially offers more insight in the selection process than other methods, but is more flexible than parametric approaches. To maximize the log-likelihood function proposed by Dear & Begg (1992) under a monotonicity constraint on w we use a differential evolution algorithm proposed by Ardia et al (2010a, b) and implemented in Mullen et al (2009).
出版偏见,事实上,确定列入一项荟萃分析研究,并不代表所有的研究都感兴趣的话题,一般被认为是威胁到的meta分析结果的有效性。明确模型的发表偏倚的方法之一是通过选择模型或加权概率分布。有关详细信息,我们称之为艾扬格和温室(1998年),亲爱的贝格(1992年),和Rufibach(2011年)。在这个包中,我们提供这些文件中提出的所有权重函数的实现。的新颖性在Rufibach(2011)是一个非增亲爱&贝格(1992)的非参数的权重函数的变体的提议。由于几乎所有的参数在文献中提出了这么远的权重函数是在事实上减少,只有少数的研究都包含在一个典型的荟萃分析正规化征收单调似乎是一个明智的做法。新的方法可能会提供更多的洞察力,但在选择过程中比其他方法更灵活的参数化方法。亲爱的 - 贝格(1992)提出的单调性约束下的对数似然函数最大化w的“我们使用差分进化算法提出的阿尔迪亚等(2010A,B),,在马伦等人(2009年和实施)。

The main functions in this package are IyenGreen and DearBegg.  Using DearBeggMonotoneCItheta one can compute a profile likelihood confidence interval for the overall effect size θ and using DearBeggMonotonePvalSelection the simulation-based p-value to assess the null hypothesis of no selection, as described in Rufibach (2011, Section 6), can be computed. In addition, we provide two datasets:  education, a dataset frequently used in illustration of meta analysis and passive_smoking, a second dataset that has caused some controversy about whether publication bias is present in this dataset or not.
在此套件的主要功能是IyenGreen和DearBegg。使用DearBeggMonotoneCItheta一个可以计算出一个轮廓似然置信区间的整体规模效应θ和使用DearBeggMonotonePvalSelection基于仿真的p价值的评估没有选择的零假设,Rufibach(2011年,第6章)中描述的,可以被计算出来。此外,我们还提供了两个数据集:education,经常使用的数据集,图中的meta分析和passive_smoking,第二个数据集,已经引起了一些争议,关于是否存在发表偏倚是在这个数据集或不。


Details

详细信息----------Details----------

Package:
包装方式:

</td><td align="left"> selectMeta
</ TD> <TD ALIGN="LEFT"> selectMeta

Type:
类型:

</td><td align="left"> Package
</ TD> <TD ALIGN="LEFT">包装

Version:
版本:

</td><td align="left"> 1.0.4
</ TD> <TD ALIGN="LEFT"> 1.0.4

Date:
日期:

</td><td align="left"> 2011-12-01
</ TD> <TD ALIGN="LEFT"> 2011-12-01

License:
许可:

</td><td align="left"> GPL (>=2)
</ TD> <TD ALIGN="LEFT"> GPL(> = 2)


(作者)----------Author(s)----------



Kaspar Rufibach (maintainer), <a href="mailto:kaspar.rufibach@gmail.com">kaspar.rufibach@gmail.com</a>, <br> <a href="http://www.kasparrufibach.ch">http://www.kasparrufibach.ch</a>




参考文献----------References----------

Differential Evolution ('DEoptim') for Non-Convex Portfolio Optimization.
Differential Evolution Optimization in 'R'. Version 2.0-7.
An Approach for Assessing Publication Bias Prior to Performing a Meta-Analysis. Statist. Sci., 7(2), 237&ndash;245.
Statistical Methods for Meta-Analysis.  Academic, Orlando, Florida.
Selection models and the file drawer problem. Statist. Sci., 3, 109&ndash;135.
'DEoptim': An 'R' Package for Global Optimization by Differential Evolution.
Selection Models with Monotone Weight Functions in Meta-Analysis. Biom. J., to appear.

实例----------Examples----------


# All functions in this package are illustrated [该包中的所有功能说明]
# in the help file for the function DearBegg().[在帮助文件中的的功能DearBegg()。]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-30 18:51 , Processed in 0.019920 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表