secrdemo(secr)
secrdemo()所属R语言包:secr
SECR Models Fitted to Demonstration Data
SECR模型安装演示数据
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Demonstration data from program Density are provided as text files in the "extdata" folder, as raw dataframes (trapXY, captXY), and as a combined capthist object (captdata) ready for input to secr.fit.
密度从程序提供的演示数据为文本文件“扩展数据”文件夹中,原始dataframes(trapXY,captXY),并作为联合capthist对象(captdata )准备输入到secr.fit。
The fitted models are objects of class secr formed by
拟合模型类的对象secr所形成的
secrdemo.0 <- secr.fit (captdata)
secrdemo.0 <- secr.fit (captdata)
secrdemo.b <- secr.fit (captdata, model = list(g0 = ~b))
secrdemo.b <- secr.fit (captdata, model = list(g0 = ~b))
secrdemo.CL <- secr.fit (captdata, CL = TRUE)
secrdemo.CL <- secr.fit (captdata, CL = TRUE)
用法----------Usage----------
data(secrdemo)
Details
详细信息----------Details----------
The raw data are 235 fictional captures of 76 animals over 5 occasions in 100 single-catch traps 30 metres apart on a square grid with origin at (365,365).
原始数据是235个虚构的捕获76只超过5次在100个单30米的距离上捕捉陷阱与起源于一个正方形网格(365,365)。
Dataframe trapXY contains the data from the Density input file "trap.txt", and captXY contains the data from "capt.txt" (Efford 2007).
数据框trapXY包含的数据从密度输入文件trap.txt,captXY包含从的capt.txt(Efford 2007)的数据。
The fitted models use a halfnormal detection function and the likelihood for multi-catch traps (expect estimates of g0 to be biased because of trap saturation Efford et al. 2009). The first is a null model (i.e. parameters constant) and the second fits a learned trap response.
的拟合的模型使用halfnormal的的检测功能和多副渔获物的陷阱(预期估计G0有偏见,因为陷阱饱和Efford等。,2009)的可能性。第一个是空的模型(即参数不变),第二个适合一个博学多才的陷阱响应。
源----------Source----------
Efford, M.G. (2007) Density 4.1: software for spatially explicit capture-recapture. Department of Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density.
Efford,M.G. (2007年)密度4.1:空间明确的捕获 - 再捕获软件。动物学系,但尼丁,奥塔哥大学,新西兰。 http://www.otago.ac.nz/density。
Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy (eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.
Efford,MG,BORCHERS DL和拜罗姆,AE(2009年)密度估计的空间明确的捕获 - 再捕获的可能性为基础的方法。 :DL汤姆逊,EG库奇和MJ康罗伊(EDS)模型的显着人口的人口进程。施普林格,纽约。 PP。 255-269。
参见----------See Also----------
capthist, read.capthist
capthist,read.capthist
实例----------Examples----------
## Not run: [#不运行:]
## navigate to folder with raw data files[,#导航到的原始数据文件的文件夹]
olddir <- setwd (system.file("extdata", package="secr"))
## construct capthist object from raw data[#结构capthist对象从原始数据]
captdata <- read.capthist ('capt.txt', 'trap.txt', fmt = 'XY')
## generate demonstration fits[产生示范一刀切]
secrdemo.0 <- secr.fit (captdata)
secrdemo.CL <- secr.fit (captdata, CL = TRUE)
secrdemo.b <- secr.fit (captdata, model = list(g0 = ~b))
## restore previous setting[#恢复以前的设置]
setwd(olddir)
## End(Not run)[#(不执行)]
## display the null model fit, using the print method for secr[#显示空模型配合,使用print方法秘书服务]
secrdemo.0
## compare fit of models[比较适合的车型]
AIC(secrdemo.0, secrdemo.b)
## display estimates for the two models (single session)[#显示两个模型的估计(单会话)]
collate(secrdemo.0, secrdemo.b)[1,,,]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|