找回密码
 注册
查看: 2807|回复: 0

R语言 secr包 possum()函数中文帮助文档(中英文对照)

  [复制链接]
发表于 2012-9-30 00:01:37 | 显示全部楼层 |阅读模式
possum(secr)
possum()所属R语言包:secr

                                         Brushtail Possum Trapping Dataset
                                         刷尾负鼠捕捉数据集

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Data from a trapping study of brushtail possums at Waitarere, North Island, New Zealand.
在Waitarere,新西兰北岛,从捕获的刷尾负鼠的研究数据。


用法----------Usage----------


data(possum)



Details

详细信息----------Details----------

Brushtail possums (Trichosurus vulpecula) are an unwanted invasive species in New Zealand.  Although most abundant in forests, where they occasionally exceed densities of 15 / ha, possums live wherever there are palatable food plants and shelter.
刷尾负鼠(Trichosurus狐狸座)是一个不必要的外来入侵物种在新西兰。虽然最丰富的森林中,他们偶尔会超过15 /公顷的密度,负鼠住哪里有可口的食品厂和住所的。

Efford et al. (2005) reported a live-trapping study of possums in Pinus radiata plantation on coastal sand dunes.  The 300-ha site at Waitarere in the North Island of New Zealand was a peninsula, bounded on one side by the sea and on two other sides by the Manawatu river.  Cage traps were set in groups of 36 at 20-m spacing around the perimeter of five squares, each 180 m on a side.  The squares ("hollow grids") were centred at random points within the 300-ha area.  Animals were tagged and released daily for 5 days in April 2002.  Subsequently, leg-hold trapping was conducted on a trapping web centred on each square (data not reported here), and strenuous efforts were made to remove all possums by cyanide poisoning and further leghold trapping across the entire area.  This yielded a density estimate of 2.26 possums / ha.
efford等。 (2005)报道的辐射松人工林的负鼠在沿海沙丘现场捕获的研究。在Waitarere在新西兰北岛的300公顷的网站是一个半岛,海的一面,另外两方面的马纳瓦图河为界。笼型设置陷阱,共36组,在20米的间距五个正方形的周界周围,每180米的一侧上。 300公顷的区域内,在任意点为中心的广场(“空心电网”)。动物标记,并在2002年4月5日每日发布。随后,腿保持捕获在捕获每平方网络中心(数据未报道),并删除所有负鼠的氰化物中毒,并进一步绊足,捕获的整个区域进行了艰苦的努力。这产生了密度估计的2.26负鼠/公顷。

Traps could catch at most one animal per day.  The live-trapped animals comprised 46 adult females, 33 adult males, 10 immature females and 11 immature males; sex and/or age were not recorded for 4 individuals (M. Coleman unpubl. data). These counts do not sum to the number of capture histories - see Note.  One female possum was twice captured at two sites on one day, having entered a second trap after being released; one record in each pair was selected arbitrarily and discarded.
陷阱可以捕捉动物每天最多。现场被困的动物包括46名成年女性,33个成年男性,10不成熟的女性和11未成熟男性;性和/或年龄没有录得4个人(M.科尔曼未发表的数据)。这些计数总和不等于捕捉历史 - 见注。一个女的负鼠是在两个网站上一天两次捕获,进入了第二个陷阱被释放后,每对中的一个记录,任意选择并丢弃。

The data are provided as a single-session capthist object "possumCH".  "possummask" is a matching mask object - see Examples. Several fitted models are provided for illustration.
中所提供的数据作为一个单一的会话capthist对象的possumCH。 “possummask”是一个相匹配的面具对象 - 看到的例子。几个拟合模型作说明。

The dataframe possumarea contains boundary coordinates of a habitat polygon that is used to clip possummask at the shore (from secr 1.5). possumarea comprises a single polygon representing the extent of terrestrial vegetation to the west, north and east, and an arbitrary straight southern boundary. The boundary is also included as a shapefile and as a text file ("possumarea.shp" etc. and "possumarea.txt" in the package "extdata" folder). See Examples in make.mask.
包含的数据框possumarea的栖息地,用来夹possummask在岸边的(从SECR 1.5)多边形的边界坐标。 possumarea包括一个多边形到西部,北部和东部陆地植被的程度,以及任意直线的南部边界。也包括边界作为一个的shapefile和作为一个文本文件(“possumarea.shp”等,“possumarea.txt”的扩展数据包文件夹中)。的示例,请参见make.mask。

The dataframe possumremovalarea contains boundary coordinates of another polygon, the nominal removal area of Efford et al. (2005 Fig. 1) (from secr 2.3).
的数据框possumremovalarea包含另一个多边形,的Efford等人的名义去除区域的边界的坐标。 (2005图1)(从2.3秘书服务)。


注意----------Note----------

A significant problem with the data used by Efford et al. (2005) was noticed recently. Five capture histories in possumCH are for animals that had lost a previous tag. A further three histories may also have been animals that were tagged previously or mis-recorded. Analyses that treat each previously tagged animal as a new individual are in error (this includes the published analyses, the pre-fitted models described here, and those in the vignette secr-densitysurfaces.pdf). All eight questionable histories are now indicated in possumCH with the logical covariate "prev.tagged".
甲显着与由Efford等所使用的数据的问题。 (2005)最近被发现的。 5个捕捉历史在possumCH的动物已经失去了以前的标签。另外三个历史也可能已经被标记的动物,以前或错误记录。作为一个新的个体治疗每个以前标记的动物的分析是在错误的(这包括公布的分析,这里所描述的预拟合模型,和那些暗角秘书服务densitysurfaces.pdf)。所有8个问题的历史,现在在possumCH表示与逻辑协“prev.tagged的”。

Methods have not yet been developed to adjust for tag loss in SECR models.
方法还没有被开发调整标记损失SECR模型。


源----------Source----------

Landcare Research, New Zealand.
土地保护研究所,新西兰。


参考文献----------References----------

likelihood methods for capture-recapture studies. Biometrics 64, 377–385.
for analysing capture-recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.
field test of two methods for density estimation. Wildlife Society Bulletin 33, 731–738.

参见----------See Also----------

capthist
capthist


实例----------Examples----------



plot(possummask)
plot(possumCH, tracks = TRUE, add = TRUE)
plot(traps(possumCH), add = TRUE)
lines(possumarea)
summary(possumCH)

## compare & average pre-fitted models[#比较前的平均拟合模型]
AIC(possum.model.0, possum.model.b, possum.model.h2)
model.average(possum.model.0, possum.model.b, possum.model.h2)

## Not run: [#不运行:]
## Roughly estimate tag-loss error by dropping dubious histories[#标签的损失粗略估计错误丢弃可疑的历史]
## i.e. restrict to "not previously tagged"[#即限制“以前没有的标签”]
NPT <- !covariates(possumCH)$prev.tagged
possum.model.0.NPT <- secr.fit(subset(possumCH,NPT), mask =
    possummask, trace=F)
predict(possum.model.0)[1,2]/ predict(possum.model.0.NPT)[1,2]
## ...about 9%[#...约9%]

## End(Not run)[#(不执行)]


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-23 15:10 , Processed in 0.021721 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表