fxi(secr)
fxi()所属R语言包:secr
Probability Density of Home Range Centre
概率密度的活动范围中心
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Display contours of the probability density function for the estimated location of one or more range centres (f(Xi|wi)), compute values for particular points X, or compute mode of pdf.
显示轮廓的一个或多个范围的中心时(f(僖|无线网络))的估计位置的概率密度函数,计算值的特定时间点的X,或计算模式的pdf。
用法----------Usage----------
fxi.contour (object, i = 1, sessnum = 1, border = 100, nx = 64,
levels = NULL, p = seq(0.1,0.9,0.1), plt = TRUE, add = FALSE,
fitmode = FALSE, plotmode = FALSE, normal = TRUE, ...)
fxi.secr(object, i = 1, sessnum = 1, X, normal = TRUE)
fxi.mode(object, i = 1, sessnum = 1, start = NULL, ...)
参数----------Arguments----------
参数:object
a fitted secr model
一个装有SECR模型
参数:i
integer or character vector of individuals for which to plot contours, or a single individual as input to other functions
整数的个人或字符向量绘制轮廓,或作为其他功能的输入到一个单一的个人
参数:sessnum
session number if object$capthist spans multiple sessions
object$capthist如果跨越多个会话的会话数
参数:border
width of blank margin around the outermost detectors
各地的最外层探测器宽度的空白保证金
参数:nx
dimension of interpolation grid in x-direction
在x-方向的插值网格尺寸
参数:levels
numeric vector of confidence levels for Pr(X|wi)
数字矢量用于Pr(X |无线网络的置信水平)
参数:p
numeric vector of contour levels as probabilities
数字矢量概率轮廓水平
参数:plt
logical to plot contours
逻辑图轮廓
参数:add
logical to add contour(s) to an existing plot
逻辑轮廓(S)到现有的图
参数:fitmode
logical to refine estimate of mode of each pdf
逻辑细化估计每个PDF模式
参数:plotmode
logical to plot mode of each pdf
每个PDF逻辑图模式
参数:X
2-column matrix of x- and y- coordinates
的x坐标和y坐标的2列的矩阵
参数:normal
logical; should values of pdf be normalised?
逻辑的PDF价值观应被归?
参数:start
vector of x-y coordinates for maximization
向量的x-y坐标的最大化
参数:...
additional arguments passed to contour or nlm
额外的参数传递给contour或nlm
Details
详细信息----------Details----------
fxi.contour computes contours of probability density for one or more detection histories. Increase nx for smoother contours. If levels is not set, contour levels are set to approximate the confidence levels in np.
fxi.contour计算概率密度轮廓的一个或多个检测的历史。增加nx流畅的轮廓。如果levels还没有设置,等高线的电平设置为近似的置信水平在np。
fxi.secr computes the probability density for a single detection history; X may contain coordinates for one or several points; a dataframe or vector (x then y) will be coerced to a matrix.
fxi.secr计算一个单一的检测历史的概率密度;X可能包含一个或多个点的坐标;一个数据框或矢量(x则y)的将被强制转换为一个矩阵。
fxi.mode finds the maximum of the pdf for a single detection history (i.e. n is of length 1). fxi.mode calls nlm.
fxi.mode发现的最大的pdf为一个单一的检测历史记录(即n是长度为1)。 fxi.modenlm。
fxi.contour with fitmode = TRUE uses fxi.mode to find the maximum of each pdf. Otherwise the reported mode is an approximation (mean of coordinates of highest contour).
fxi.contourfitmode = TRUE使用fxi.mode找到的最大的每一个PDF。否则,所报告的模式是一个近似值(最高轮廓的坐标的平均值)。
If i is character it will be matched to row names of object$capthist (restricted to the relevant session in the case of a multi-session fit); otherwise it will be interpreted as a row number.
如果i是字符将被匹配的对象capthist(只限于在有关会议的情况下,会多适合)行名称,否则将被解释为一个行号。
Values of the pdf are optionally normalised by dividing by the integral of Pr(wi|X) over the habitat mask in object.
可选的PDF值归,除以镨(无线| X)的积分在栖息地的面具object。
If start is not provided then the first detector site is used, but this is not guaranteed to work.
start如果不提供使用的第一个探测器网站,但是这不能保证工作。
The ... argument gives additional control over a contour plot; for example, set drawlabels = FALSE to suppress contour labels.
该...参数的等高线图提供了额外的控制权,例如,设置drawlabels = FALSE抑制等值线标识。
值----------Value----------
fxi.contour –
fxi.contour -
Coordinates of the plotted contours are returned as a list with one component per polygon. The list is returned invisibly if plt = TRUE.
所绘制的轮廓坐标返回为与多边形的一个组成部分,每一个列表。返回列表不可见的,如果PLT = TRUE。
An additional component "mode" reports the x-y coordinates of the highest point of each pdf (see Details).
另外一个组件“模式”报告的XY坐标的每一个PDF格式的最高点(见详情)。
fxi.secr –
fxi.secr -
Vector of probability densities
向量的概率密度
fxi.mode –
fxi.mode -
List with components "x" and "y"
列表与组件的“x”和“y”
注意----------Note----------
These functions only work with homogeneous Poisson density models and do not allow incomplete usage (some detectors not used on some occasions).
这些功能只与齐次泊松密度模型,不要让不完整的使用(在某些情况下某些检测器不使用)。
参考文献----------References----------
likelihood methods for capture–recapture studies. Biometrics 64, 377–385.
参见----------See Also----------
pdot.contour, contour
pdot.contour,contour
实例----------Examples----------
fxi.secr(secrdemo.0, i = 1, X = c(365,605))
plot(secrdemo.0$capthist)
## contour first 5 detection histories[#轮廓前5个检测历史]
fxi.contour (secrdemo.0, i = 1:5, add = TRUE,
plotmode = TRUE, drawlabels = FALSE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|