measure_risk(sdcMicro)
measure_risk()所属R语言包:sdcMicro
Measure Risk for weighted or unweighted data / Individual risk to household risk / Compute a risk threshold based on a global risk value
衡量风险加权或不加权的数据/个人到家庭风险的风险/一个全球性的风险值的基础上计算的风险阈值
译者:生物统计家园网 机器人LoveR
描述----------Description----------
measure risk like in mu-argus / To be used when risk of disclosure for individuals within a family is considered to be statistical independent. This is the assumption made in mu-Argus risk model. / To be used when the risk measurement at individual level can be used to calculate the file level risk by taking the average of the individual risk.
衡量风险亩乌鳢/风险披露在一个家庭内的个人被认为是统计独立时所使用的一样。这是在亩阿格斯风险模型所作的假设。 /在个人层面上的风险测量时所使用的平均个人的风险,可用于计算文件级别的风险。
用法----------Usage----------
measure_risk(data,variables,weight_variable=NULL,missing=-999,l_recurs_c=2,ldiv_index=NULL)
## S3 method for class 'measure_risk'
print(x, ...)
measure_hier(data,variables,weight_variable=NULL,hid,missing=-999)
## S3 method for class 'measure_hier'
print(x, ...)
measure_thres(data,variables,weight_variable=NULL,missing=-999)
## S3 method for class 'measure_thres'
print(x, ...)
参数----------Arguments----------
参数:data
Input data
输入数据
参数:variables
Names of key variables
关键变量的名称
参数:weight_variable
name of variable containing sample weights
名称的变量,包含样本权重
参数:hid
Household ID
家庭ID
参数:missing
A integer value to be used as missing value in the C++ routine
在C + +程序的缺失值被用来作为一个整数值,
参数:l_recurs_c
L-Diversity Constant
L-多样性常数
参数:ldiv_index
indices of the variables used for l-diversity
升多样性的指数,其中所使用的变量
参数:x
Output of measure_risk, measure_hier or measure_thres
输出measure_risk,measure_hier或measure_thres的
参数:...
currently unused
目前未使用的
值----------Value----------
xx
XX
(作者)----------Author(s)----------
Alexander Kowarik, Bernd Prantner, IHSN C++ source
参考文献----------References----------
参见----------See Also----------
measure_hier
measure_hier
实例----------Examples----------
# measure_risk[measure_risk]
data(testdata)
res <- measure_risk(testdata,c("urbrur","roof","walls","water","sex"))
print(res)
head(res$Res)
resw <- measure_risk(testdata,c("urbrur","roof","walls","water","sex"),weight_variable="sampling_weight")
print(resw)
head(resw$Res)
res1 <- measure_risk(testdata,c("urbrur","roof","walls","water","sex"),ldiv_index=c(1))
print(res1)
head(res1$Mat_Risk)
res2 <- measure_risk(testdata,c("urbrur","roof","walls","water","sex"),ldiv_index=c(1,2))
print(res2)
head(res2$Mat_Risk)
# measure_hier[measure_hier]
resh <- measure_hier(testdata,c("urbrur","roof","walls","water","sex"),weight_variable="sampling_weight",hid="ori_hid")
print(resh)
# measure_thres[measure_thres]
rest <- measure_thres(testdata,c("urbrur","roof","walls","water","sex"),weight_variable="sampling_weight")
print(rest)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|