找回密码
 注册
查看: 3496|回复: 0

R语言 sdcMicro包 addNoise()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 23:16:49 | 显示全部楼层 |阅读模式
addNoise(sdcMicro)
addNoise()所属R语言包:sdcMicro

                                         Adding noise for the perturbation of data
                                         添加数据的扰动噪声

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Various adding noise methods for the perturbation of continuous scaled variables can be used.
连续规模变量的扰动增加噪声的方法都可以使用。


用法----------Usage----------


addNoise(x, noise = 150, method = "additive", p = 0.001, delta=0.1)



参数----------Arguments----------

参数:x
data frame or matrix which should be perturbed  
数据框或矩阵扰动


参数:noise
amount of noise (in percentages)
的噪音量(百分比)


参数:method
choose between "additive", "correlated", "correlated2", "restr", "ROMM", "outdect"   
选择“添加剂”,“相关”,“correlated2,restr”,“罗姆”,outdect


参数:p
multiplication factor for method "ROMM"  
乘法因子法“罗姆”


参数:delta
parameter for method "correlated2", details can be found in the reference below.   
参数方法“correlated2,详情可在下面的参考。


Details

详细信息----------Details----------

Method "additive" adds noise completely at random to each variable  depending on there size and standard deviation. "correlated" and method "correlated2" adds noise and preserves the covariances as descriped in  R. Brand (2001) or in the reference given below. Method "restr" takes the  sample size into account when adding noise.  Method "ROMM" is an implementation of the algorithm ROMM (Random Orthogonalized  Matrix Masking) (Fienberg, 2004). Method "outdect" adds noise only to outliers.  The outliers are idedentified with univariate and robust multivariate procedures  based on a robust mahalanobis distancs calculated by the MCD estimator.
方法添加剂将噪音完全随机的每个变量有大小和标准差。 “相关”和的方法correlated2添加噪声和保留的协方差作为descriped的R.品牌(2001)或在下面给出的参考。方法“restr”需要的样本量时,考虑增加噪声。方法罗姆是一个执行的算法罗姆(随机正交化矩阵掩蔽)(Fienberg,2004年)。方法“outdect”只离群的噪音。的的离群值idedentified一个强大的的马氏distancs计算的MCD估计的基础上与单因素和强大的多变量程序。


值----------Value----------

An object of class “micro” with following entities:
“微型”类的一个对象,具有以下实体:


参数:x
the original data  
的原始数据


参数:xm
the modified (perturbed) data  
修改后的数据(扰动)


参数:method
method used for perturbation
方法用于扰动


参数:noise
amount of noise
的噪声量


(作者)----------Author(s)----------


Matthias Templ



参考文献----------References----------

“On the security of noise addition for privacy in statistical databases”,  Lecture Notes in Computer Science, vol. 3050, pp. 149-161, 2004.  ISSN 0302-9743. Vol. Privacy in Statistical Databases,  eds. J. Domingo-Ferrer and V. Torra, Berlin: Springer-Verlag.  http://vneumann.etse.urv.es/publications/sci/lncs3050OntheSec.pdf,
Joint UNECE/Eurostat work session on statistical data confidentiality, Geneva, Switzerland, 2005,  http://www.niss.org/dgii/TR/wp.11.e(ROMM).pdf
“Random orthogonal matrix masking methodology for microdata release”,  International Journal of Information and Computer Security, vol. 2, pp. 86-105, 2008.
Robustification of Microdata Masking Methods and the Comparison  with Existing Methods,  Lecture Notes in Computer Science, Privacy in Statistical Databases,  vol. 5262, pp. 177-189, 2008.  
New Developments in Statistical Disclosure Control and Imputation: Robust Statistics Applied to Official Statistics, Suedwestdeutscher Verlag fuer Hochschulschriften,  2009, ISBN: 3838108280, 264 pages.
Practical Applications in Statistical Disclosure Control Using R,   Privacy and Anonymity in Information Management Systems New Techniques for New Practical Problems,  Springer, 31-62, 2010, ISBN: 978-1-84996-237-7.

参见----------See Also----------

summary.micro
summary.micro


实例----------Examples----------


data(Tarragona)
a1 <- addNoise(Tarragona)
a1

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-30 00:40 , Processed in 0.027314 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表