distribution-futures(schwartz97)
distribution-futures()所属R语言包:schwartz97
Schwartz two-factor Model: Distribution of Futures Prices
施瓦茨的双因素模式:经销期货价格
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Density, distribution function, quantile function and random number generation of futures prices.
密度,分布函数,分位数函数和随机数生成的期货价格。
用法----------Usage----------
## S4 method for signature 'ANY,ANY,ANY,numeric'
dfutures(x, time = 0.1, ttm = 1, s0 = 50, delta0 = 0,
mu = 0.1, sigmaS = 0.3, kappa = 1, alpha = 0,
sigmaE = 0.5, rho = 0.75, r = 0.05, lambda = 0,
alphaT = NULL, measure = c(" ", "Q"), ...)
## S4 method for signature 'ANY,ANY,ANY,schwartz2f'
dfutures(x, time = 0.1, ttm = 1, s0, r = 0.05,
lambda = 0, alphaT = NULL, measure = c(" ", "Q"), ...)
## S4 method for signature 'ANY,ANY,ANY,schwartz2f.fit'
dfutures(x, time = 0.1, ttm = 1, s0, measure = c(" ", "Q"), ...)
## S4 method for signature 'ANY,ANY,ANY,numeric'
pfutures(q, time = 0.1, ttm = 1, s0 = 50, delta0 = 0,
mu = 0.1, sigmaS = 0.3, kappa = 1, alpha = 0,
sigmaE = 0.5, rho = 0.75, r = 0.05, lambda = 0,
alphaT = NULL, measure = c(" ", "Q"), ...)
## S4 method for signature 'ANY,ANY,ANY,schwartz2f'
pfutures(q, time = 0.1, ttm = 1, s0, r = 0.05,
lambda = 0, alphaT = NULL, measure = c(" ", "Q"), ...)
## S4 method for signature 'ANY,ANY,ANY,schwartz2f.fit'
pfutures(q, time = 0.1, ttm = 1, s0, measure = c(" ", "Q"), ...)
## S4 method for signature 'ANY,ANY,ANY,numeric'
qfutures(p, time = 0.1, ttm = 1, s0 = 50, delta0 = 0,
mu = 0.1, sigmaS = 0.3, kappa = 1, alpha = 0,
sigmaE = 0.5, rho = 0.75, r = 0.05, lambda = 0,
alphaT = NULL, measure = c(" ", "Q"), ...)
## S4 method for signature 'ANY,ANY,ANY,schwartz2f'
qfutures(p, time = 0.1, ttm = 1, s0, r = 0.05,
lambda = 0, alphaT = NULL, measure = c(" ", "Q"), ...)
## S4 method for signature 'ANY,ANY,ANY,schwartz2f.fit'
qfutures(p, time = 0.1, ttm = 1, s0, measure = c(" ", "Q"), ...)
## S4 method for signature 'ANY,ANY,ANY,numeric'
rfutures(n, time = 0.1, ttm = 1, s0 = 50, delta0 = 0,
mu = 0.1, sigmaS = 0.3, kappa = 1, alpha = 0, sigmaE = 0.5,
rho = 0.75, r = 0.05, lambda = 0, alphaT = NULL, measure = c(" ", "Q"))
## S4 method for signature 'ANY,ANY,ANY,schwartz2f'
rfutures(n, time = 0.1, ttm = 1, s0, r = 0.05,
lambda = 0, alphaT = NULL, measure = c("P", "Q"))
## S4 method for signature 'ANY,ANY,ANY,schwartz2f.fit'
rfutures(n, time = 0.1, ttm = 1, s0, measure = c("P", "Q"))
参数----------Arguments----------
参数:q, x
vector of quantiles.
向量的位数。
参数:p
vector of probabilities.
向量的概率。
参数:n
number of observations. If length(n) > 1, the length is taken to be the number required.
若干意见。如果length(n) > 1,长度所需的数量。
参数:time
Time where the futures process is evaluated (relative to now).
期货评估过程的时间(到现在)。
参数:ttm
Time to maturity (relative to now).
到期时间(到现在)。
参数:s0
Either a numeric representing the initial value of the commodity spot price or an object inheriting from class schwartz2f.
一个numeric代表的大宗商品现货价格的初始值或对象继承类schwartz2f。
参数:delta0
Initial value of the convenience yield.
便利收益的初始值。
参数:mu
Drift term of commodity spot price.
漂移项商品现货价格。
参数:sigmaS
Diffusion parameter of the spot price process.
扩散参数的现货价格。
参数:kappa
Speed of mean-reversion of the convenience yield process.
均值回归的便利收益过程的速度。
参数:alpha
Mean-level of the convenience yield process.
平均数级的便利收益过程。
参数:sigmaE
Diffusion parameter of the convenience yield process.
便利收益过程中的扩散参数。
参数:rho
Correlation coefficient between the Brownian motion driving the spot price and the convenience yield process.
之间的相关系数的布朗运动驱动的现货价格和便利收益的过程。
参数:lambda
Market price of convenience yield risk (see Details).
便利收益风险的市场价格(见详情)。
参数:alphaT
Mean-level of the convenience yield process with respect to the equivalent martingale measure (see Details).
便利收益过程中的等价鞅测度的平均水平(见详情)。
参数:r
Instantaneous risk-free interest rate.
瞬时无风险利率。
参数:measure
under which the functions are computed. “P” denotes the objective measure, “Q” the risk-neutral measure (see Details).
根据该函数被计算。 “P”表示客观的衡量标准,“Q”的风险中性测度(见详情)。
参数:...
Arguments to be passed to the functions d/p/q-norm.
要传递的功能d/p/q-norm。
Details
详细信息----------Details----------
Futures prices depend on the spot-price and the convenience yield.<br>
期货价格取决于现货价格和便利收益。<BR>
To get the real (i.e. the objective) distribution of futures prices at some date in the future the dynamics is considered under the objective measure P. The P-dynamics is
要获得真正的期货价格在未来的某个日期(即目标)分布的动态下被认为是客观的衡量P. P-动态
where W1, W2 are Brownian motions under the objective measure, the measure P.<br>
W1, W2是布朗运动下的客观的衡量标准,衡量P.参考
Options on futures are evaluated based on the risk-neutral dynamics of the spot-price and the convenience yield, i.e. under the measure Q. The Q-dynamics is
期货期权进行评估的基础上的现货价格和便利收益,即Q的Q-力度的措施下,风险中性的动态
where W1*, W2* are Brownian motions with respect to Q.<br>
其中W1*, W2*是布朗运动,就问:参考
lambda / kappa</i> where lambda is the market price of convenience-yield risk. The market price of convenience yield risk can either be specified explicitly by lambda or implicitly by alphaT. The relation is alphaT = alpha - lambda / kappa. See the package vignette.
λ/ KAPPA </ I>lambda是市场价格,便利收益的风险。便利收益风险的市场价格可以显式地指定lambda或暗示的alphaT。的关系alphaT = alpha - lambda / kappa。请参阅的包小插曲。
值----------Value----------
Probabilities, densities, quantiles or samples of the log-normally distributed futures prices as numeric.
概率密度,分位数或样品的对数正态分布的期货价格numeric。
注意----------Note----------
Note that futures and forward prices coincide as the interest rate is assumed to be constant in the Schwartz two-factor model.
需要注意的是期货和远期价格一致施瓦茨双因素模型中,利率被认为是不变的。
(作者)----------Author(s)----------
Philipp Erb, David Luethi, Juri Hinz
参考文献----------References----------
Valuation and Hedging by Eduardo S. Schwartz <br> Journal of Finance 52, 1997, 923-973<br>
Convenience Yields, Interest Rates, and Jump Diffusions in the Spot by Jimmy E. Hilliard and Jorge Reis <br> Journal of Financial and Quantitative Analysis 33, 1998, 61-86
参见----------See Also----------
pricefutures, d/p/qstate, r/simstate
pricefutures,d/p/qstate,r/simstate
实例----------Examples----------
## Create a "schwartz2f"-object[#创建的“schwartz2f”。对象]
model <- schwartz2f()
## Probability[#概率]
pfutures(q = 10 * 3:9, time = 0.5, ttm = 2, model, lambda = 0.01)
## Density[#密度]
dfutures(x = c(20, 40, 100), time = 0.5, ttm = 2, model, lambda = 0.01)
## Quantile[#位数]
qfutures(p = 0.1 * 2:5, time = 0.5, ttm = 10, model, lambda = 0.01)
## Sample[#示例]
sim <- rfutures(n = 1000, time = 0.5, ttm = 5, model, lambda = 0.01)
hist(sim, prob = TRUE)
lines(seq(30, 300, length = 100),
dfutures(seq(30, 300, length = 100),
time = 0.5, ttm = 5, model, lambda = 0.01), col = "red")
## At time 0 the futures price is a deterministic function of s0 and[#在0时刻的期货价格是一个确定的函数S0和]
## delta0. Therefore 3 times the same value is obtained:[#delta0。因此,相同的值的3倍得到的:]
rfutures(3, time = 0, ttm = 1, model, lambda = 0)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|