samr.compute.siggenes.table(samr)
samr.compute.siggenes.table()所属R语言包:samr
Compute significant genes table
计算显着的基因表
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Computes significant genes table, starting with samr object "samr.obj" and delta.table "delta.table"
计算显着的基因表,从SAMR的对象“samr.obj”和delta.table“delta.table开始”
用法----------Usage----------
samr.compute.siggenes.table(samr.obj, del, data, delta.table,
min.foldchange=0, all.genes=FALSE, compute.localfdr=FALSE)
参数----------Arguments----------
参数:samr.obj
Object returned from call to samr
返回的对象调用SAMR
参数:del
Value of delta to define cutoff rule
Delta值来定义截止规则
参数:data
Data object, same as that used in call to samr
数据对象,用于调用SAMR相同
参数:delta.table
Object returned from call to samr.compute.delta.table
返回的对象从调用samr.compute.delta.table的
参数:min.foldchange
The minimum fold change desired; should be >1; default is zero, meaning no fold change criterion is applied
变化所需的最低倍;> 1,默认值是零,这意味着没有倍数的改变标准的应用
参数:all.genes
Should all genes be listed? Default FALSE
如果所有的基因上市?默认为false
参数:compute.localfdr
Should the local fdrs be computed (this can take some time)? Default FALSE
如果当地FDRS计算(这可能需要一些时间)?默认为false
值----------Value----------
return(list(genes.up=res.up, genes.lo=res.lo, color.ind.for.multi=color.ind.for.multi, ngenes.up=ngenes.up, ngenes.lo=ngenes.lo))
回报率(列表(genes.up = res.up,genes.lo = res.lo,color.ind.for.multi = color.ind.for.multi,ngenes.up = ngenes.up,ngenes.lo = ngenes。 LO))
<table summary="R valueblock"> <tr valign="top"><td>genes.up</td> <td> Matrix of significant genes having posative correlation with the outcome. For survival data, genes.up are those genes having positive correlation with risk- that is, increased expression corresponds to higher risk (shorter survival).</td></tr> <tr valign="top"><td>genes.lo</td> <td> Matrix of significant genes having negative correlation with the outcome. For survival data,genes. lo are those whose increased expression corresponds to lower risk (longer survival).</td></tr> <tr valign="top"><td>color.ind.for.multi</td> <td> For multiclass response: a matrix with entries +1 if the class mean is larger than the overall mean at the 95 levels, -1 if less, and zero otehrwise. This is useful in determining which class or classes causes a feature to be significant</td></tr> <tr valign="top"><td>ngenes.up</td> <td> Number of significant genes with positive correlation</td></tr> <tr valign="top"><td>ngenes.lo</td> <td> Number of significant genes with negative correlation</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> genes.up</ TD>的结果posative相关的重要基因<TD>矩阵。为了生存数据,genes.up这些基因具有正相关性表达增加风险,也就是说,对应于高风险(生存期短)。</ TD> </ TR> <tr valign="top"> <TD> genes.lo </ TD> <TD>矩阵的重要基因呈负相关的结果。为了生存数据,基因。 LO的表达增加,相当于降低风险(存活时间较长)。</ TD> </ TR> <tr valign="top"> <TD>color.ind.for.multi </ TD> <TD>的多响应:条目1的矩阵,如果类平均值大于95层面的整体平均,-1,如果少,和零otehrwise。这是有用的,以确定其中一类或多类会导致显著</ TD> </ TR> <tr valign="top"> <TD>ngenes.up </ TD> <TD>数显着基因的功能,具有正相关性</ TD> </ TR> <tr valign="top"> <TD>ngenes.lo </ TD> <TD>数呈负相关的重要基因</ TD> </ TR> < / TABLE>
(作者)----------Author(s)----------
Balasubrimanian Narasimhan and Robert Tibshirani
参考文献----------References----------
Significance analysis of microarrays applied to the ionizing radiation response" PNAS 2001 98: 5116-5121, (Apr 24).
实例----------Examples----------
#generate some example data[产生一些示例数据]
set.seed(100)
x<-matrix(rnorm(1000*20),ncol=20)
dd<-sample(1:1000,size=100)
u<-matrix(2*rnorm(100),ncol=10,nrow=100)
x[dd,11:20]<-x[dd,11:20]+u
y<-c(rep(1,10),rep(2,10))
data=list(x=x,y=y, geneid=as.character(1:nrow(x)),
genenames=paste("g",as.character(1:nrow(x)),sep=""), logged2=TRUE)
samr.obj<-samr(data, resp.type="Two class unpaired", nperms=100)
delta.table<-samr.compute.delta.table(samr.obj)
del<- 0.3
siggenes.table<- samr.compute.siggenes.table(samr.obj, del, data, delta.table)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|