fit.li.wong(affy)
fit.li.wong()所属R语言包:affy
Fit Li and Wong Model to a Probe Set
李和黄的模型适合探针集
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fits the model described in Li and Wong (2001) to a probe set with I chips and J probes.
适合给我用的芯片和J探针的探针组在李和黄(2001)描述的模型。
用法----------Usage----------
fit.li.wong(data.matrix, remove.outliers=TRUE, normal.array.quantile=0.5,
normal.resid.quantile=0.9, large.threshold=3, large.variation=0.8,
outlier.fraction=0.14, delta=1e-06, maxit=50,
outer.maxit=50,verbose=FALSE, ...)
li.wong(data.matrix,remove.outliers=TRUE, normal.array.quantile=0.5,
normal.resid.quantile=0.9, large.threshold=3, large.variation=0.8,
outlier.fraction=0.14, delta=1e-06, maxit=50,
outer.maxit=50,verbose=FALSE)
参数----------Arguments----------
参数:data.matrix
an I x J matrix containing the probe set data. Typically the i,j entry will contain the PM-MM value for probe pair j in chip i. Another possible use, is to use PM instead of PM-MM.
我个J矩阵,包含探针组数据。通常情况下,I,J条目将包含下午MM探针在芯片我对j的值。另一种可能的用途,使用PM,而不是下午MM。
参数:remove.outliers
logical value indicating if the algorithm will remove outliers according to the procedure described in Li and Wong (2001).
逻辑值,指出如果该算法将删除离群根据李和黄(2001)中描述的程序。
参数:large.threshold
used to define outliers.
用于定义离群。
参数:normal.array.quantile
quantile to be used when determining what a normal SD is. probes or chips having estimates with SDs bigger than the quantile normal.array.quantile of all SDs x large.threshold.
位数将用于确定一个正常的SD是什么时。探针或芯片与SDS估计大于位数normal.array.quantile所有SDS X的large.threshold。
参数:normal.resid.quantile
any residual bigger than the normal.resid.quantile quantile of all residuals x large.threshold is considered an outlier.
任何残留比normal.resid.quantile所有残留的分量更大Xlarge.threshold被认为是一个离群。
参数:large.variation
any probe or chip describing more than this much total variation is considered an outlier.
任何探测器或描述比这多的总变异更多的芯片被认为是离群。
参数:outlier.fraction
this is the maximum fraction of single outliers that can be in the same probe or chip.
这是单离群,可以在相同的探针或芯片的最大部分。
参数:delta
numerical value used to define the stopping criterion.
停止标准用来定义数值。
参数:maxit
maximum number of iterations when fitting the model.
迭代拟合模型时的最大数量。
参数:outer.maxit
maximum number of iterations of defined outliers.
迭代定义离群的最大数量。
参数:verbose
logical value. If TRUE information is given of the status of the algorithm.
逻辑值。如果TRUE信息的算法的状态。
参数:...
additional arguments.
额外的参数。
Details
详情----------Details----------
This is Bioconductor's implementation of the Li and Wong algorithm. The Li and Wong PNAS 2001 paper was followed. However, you will not get the same results as you would get with dChip. dChip is not open source so it is not easy to reproduce.
这是Bioconductor的李皇算法的实施。随后的2001年国家科学院院刊李和黄的纸。但是,你不会得到相同的结果,你会得到与dChip。 dChip不是开源的,所以它是不容易重现。
Notice that this iterative algorithm will not always converge. If you run the algorithm on thousands of probes expect some non-convergence warnings. These are more likely when few arrays are used. We recommend using this method only if you have 10 or more arrays.
请注意,此迭代算法不会总是收敛。如果您运行的算法上成千上万的探针期望一些不衔接的警告。这些更有可能很少阵列时使用。我们建议使用此方法,如果你有10个或更多阵列。
Please refer to references for more details.
请参阅参考更多细节。
值----------Value----------
li.wong returns a vector of expression measures (or column effects) followed by their respective standard error estimates. It was designed to work with express which is no longer part of the package.
li.wong返回一个向量表达各自的标准误差估计的措施(或列的影响)。 express包的一部分,不再是它的设计工作。
fit.li.wong returns much more. Namely, a list containing the fitted parameters and relevant information.
fit.li.wong返回得多。即一个列表,其中包含的拟合参数及相关信息。
参数:theta
fitted thetas.
装thetas。
参数:phi
fitted phis.
装PHIS。
参数:sigma.eps
estimated standard deviation of the error term.
估计误差的标准偏差。
参数:sigma.theta
estimated standard error of theta.
theta的估计标准误差。
参数:sigma.phi
estimated standard error of phis.
估计标准误差的潜在危险装置。
参数:theta.outliers
logical vector describing which chips (thetas) are considered outliers (TRUE).
逻辑向量描述这芯片(thetas)被认为是离群值(TRUE)。
参数:phi.outliers
logical vector describing which probe sets (phis) are considered outliers (TRUE)
逻辑向量描述探针集(PHIS)被认为是离群值(TRUE)
参数:convergence1
logical value. If FALSE the algorithm did not converge when fitting the phis and thetas.
逻辑值。如果FALSE算法不收敛在装修PHIS及thetas的时。
参数:convergence2
logical value. If FALSE the algorithm did not converge in deciding what are outliers.
逻辑值。如果FALSE算法没有收敛,在决定什么是离群。
参数:iter
number of iterations needed to achieve convergence.
数达到收敛所需的迭代。
参数:delta
difference between thetas when iteration stopped.
thetas时,迭代停止的区别。
作者(S)----------Author(s)----------
Rafael A. Irizarry, Cheng Li, Fred A. Wright, Ben Bolstad
参考文献----------References----------
98, 31–36.
参见----------See Also----------
li.wong, expresso
li.wong,expresso
举例----------Examples----------
x <- sweep(matrix(2^rnorm(600),30,20),1,seq(1,2,len=30),FUN="+")
fit1 <- fit.li.wong(x)
plot(x[1,])
lines(fit1$theta)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|