residuals.probit(sampleSelection)
residuals.probit()所属R语言包:sampleSelection
Residuals of probit models
残差的概率模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Calculate residuals of probit models.
计算probit模型的残差。
用法----------Usage----------
## S3 method for class 'probit'
residuals( object, type = "deviance", ... )
参数----------Arguments----------
参数:object
an object of class probit.
对象类probit。
参数:type
the type of residuals which should be returned. The alternatives are: "deviance" (default), "pearson", and "response" (see details).
应返回的残差的类型。替代品是:“越轨”(默认),“培生”,和“响应”(见详情)。
参数:...
further arguments (currently ignored).
进一步的论据(目前忽略不计)。
Details
详细信息----------Details----------
The residuals are calculated with following formulas:
残差用下面的公式计算:
Response residuals: r_i = y_i - \hat{y}_i
响应残差:r_i = y_i - \hat{y}_i
Pearson residuals: r_i = ( y_i - \hat{y}_i ) / √{ \hat{y}_i ( 1 - \hat{y}_i ) }
Pearson残差:r_i = ( y_i - \hat{y}_i ) / √{ \hat{y}_i ( 1 - \hat{y}_i ) }
Deviance residuals: r_i = √{ -2 \log( \hat{y}_i ) } if y_i = 1, r_i = - √{ -2 \log( 1 - \hat{y}_i ) } if y_i = 0
越轨残差:r_i = √{ -2 \log( \hat{y}_i ) }如果y_i = 1,r_i = - √{ -2 \log( 1 - \hat{y}_i ) }如果y_i = 0
Here, r_i is the ith residual, y_i is the ith response, \hat{y}_i = Φ( x_i' \hat{β} ) is the estimated probability that y_i is one, Φ is the cumulative distribution function of the standard normal distribution, x_i is the vector of regressors of the ith observation, and \hat{β} is the vector of estimated coefficients.
在这里,r_i是i个残留,y_i是i个应答,\hat{y}_i = Φ( x_i' \hat{β} )是y_i的估计概率是, Φ是标准正态分布的累积分布函数,x_i是向量回归系数的i个观测和\hat{β}是向量的估计系数。
More details are available in Davison & Snell (1991).
更多细节可在戴维森和Snell(1991)。
值----------Value----------
A numeric vector of the residuals.
一个数值向量的残差。
(作者)----------Author(s)----------
Arne Henningsen
参考文献----------References----------
Residuals and diagnostics. In: Statistical Theory and Modelling. In Honour of Sir David Cox, edited by Hinkley, D. V., Reid, N. and Snell, E. J., Chapman & Hall, London.
参见----------See Also----------
probit, residuals,
probit,residuals,
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|