SaemixModel-class(saemix)
SaemixModel-class()所属R语言包:saemix
Class "SaemixModel"
类“SaemixModel”
译者:生物统计家园网 机器人LoveR
描述----------Description----------
An object of the SaemixModel class, representing a non-linear mixed-effect model structure, used by the SAEM algorithm.
对象的SaemixModel类,非线性混合效应模型的结构,使用SAEM算法。
类对象----------Objects from the Class----------
An object of the SaemixModel class can be created by using the function saemixModel
可以创建的SaemixModel类的一个目的通过使用函数saemixModel
插槽----------Slots----------
model: function used to compute the structural model. The function should return a vector of predicted values given a matrix of individual parameters, a vector of indices specifying which records belong to a given individual, and a matrix of dependent variables (see examples).
model:函数,用于计算结构模型。该函数返回一个矢量的预测值,各个参数的矩阵,向量的索引指定的记录属于某一个人,和因变量矩阵(见例子)。
description: model description (optional) as a character string
description“:作为一个字符串的模式说明(可选)
psi0: a matrix with a number of columns equal to the number of parameters in the model, and one (when no covariates are available) or two (when covariates enter the model) giving the initial estimates for the fixed effects. The column names of the matrix should be the names of the parameters in the model, and will be used in the plots and the summaries
psi0:等于模型中的参数的数目,(当没有协变量是可用的)或两个(当协变量输入模型)给出固定效应的初步估计数列矩阵。矩阵的列名应该是在模型中的参数的名称,并且将用于在图和摘要
transform.par: the distribution for each parameter (0=normal, 1=log-normal, 2=probit, 3=logit). Defaults to a vector of 1s (all parameters have a log-normal distribution)
transform.par:每个参数的分布(0 =正常,1 =登录正常,2 =概率,3 =罗吉特)。默认为1的向量(所有参数都具有对数正态的分布)
fixed.estim: whether parameters should be estimated (1) or fixed to their initial estimate (0). Defaults to a vector of 1s
fixed.estim:参数是否应该进行估计(1)或固定到它们的初始估计值(0)。默认为1的向量
error.model: name of the residual error model
error.model:名的残差模型
covariate.model: a matrix giving the covariate model. Defaults to no covariate in the model (empty matrix)
covariate.model:矩阵,协变量的模型。默认为没有协变量在模型中(空矩阵)
betaest.model: a matrix giving the effects model (internal)
betaest.model:基体效应模型(内部)
covariance.model: a square matrix of size equal to the number of parameters in the model, giving the variance-covariance matrix of the model: 1s correspond to estimated variances (in the diagonal) or covariances (off-diagonal elements). Defaults to the identity matrix
covariance.model:模型中的参数的数目的大小相等的正方形矩阵,使模型的方差 - 协方差矩阵:1秒对应于估计的方差(在对角线上)或协方差(非对角(off-diagonal)元素)。默认的身份矩阵
omega.init: a square matrix of size equal to the number of parameters in the model, giving the initial estimate for the variance-covariance matrix of the model. Defaults to the identity matrix
omega.init:模型中的参数的数目的大小相等的正方形矩阵,给出的初始估计的方差 - 协方差矩阵的模型。默认的身份矩阵
error.init: a vector of size 2 giving the initial value of a and b in the error model. Defaults to 1 for each estimated parameter in the error model
error.init:一个向量的大小为2的错误模型中的a和b给出的初始值。默认设置为1,每个参数估计中的误差模型
nb.parameters: number of parameters
nb.parameters:数量的参数
name.modpar: names of the model parameters
name.modpar:模型参数的名称
name.fixed: names of the fixed effects estimated in the model
name.fixed:固定效应模型估计的名字
name.random: names of the random effects estimated in the model
name.random:随机效应模型估计的名字
name.res: names of the parameters of the residual error model
name.res的残余误差模型的参数名称
name.predictors: names of the predictors (X)
name.predictors:姓名预测变量(X)
name.X: name of the predictor used in graphs
name.X:用于图表名称的预测
name.response: name of the response (Y)
name.response:名称的响应(Y)
name.cov: name of the covariates
name.cov:协变量的名称
indx.fix: index of estimated fixed effects (internal)
indx.fix:指数的估计固定效应(内部)
indx.cov: index of estimated fixed effects associated with covariate effects (internal)
indx.cov:指数与协变量的影响,估计固定效应(内部)
indx.omega: index of estimated random effects (internal)
indx.omega:指数估计随机效应(内部)
indx.res: index of parameters of the residual error model (internal)
indx.res指数的剩余误差模型的参数(内部)
Mcovariates: matrix of the covariates (internal)
Mcovariates:矩阵的协变量(内部)
方法----------Methods----------
[<-signature(x = "SaemixModel"): replace elements of object
[< - signature(x = "SaemixModel"):替换元素的对象
[signature(x = "SaemixModel"): access elements of object
[signature(x = "SaemixModel"):访问元素的对象
initializesignature(.Object = "SaemixModel"): internal function to initialise object, not to be used
初始化signature(.Object = "SaemixModel"):内部功能初始化对象,不使用
plotsignature(x = "SaemixModel"): plot results (see saemix.plot.data
图signature(x = "SaemixModel"):图的结果(见saemix.plot.data
printsignature(x = "SaemixModel"): prints details about the object
打印signature(x = "SaemixModel"):打印对象的详细介绍
showallsignature(object = "SaemixModel"): prints an extensive summary of the object
SHOWALL signature(object = "SaemixModel")的对象:打印了广泛的总结
showsignature(object = "SaemixModel"): prints a short summary of the object
显示signature(object = "SaemixModel"):打印一个简短的摘要的对象
summarysignature(object = "SaemixModel"): summary of the model
总结signature(object = "SaemixModel"):总结的模型
(作者)----------Author(s)----------
Emmanuelle Comets <emmanuelle.comets@inserm.fr>, Audrey Lavenu, Marc Lavielle.
参考文献----------References----------
Monolix32_UsersGuide.pdf (http://software.monolix.org/sdoms/software/)
参见----------See Also----------
SaemixData,saemixModel, saemixControl,saemix
SaemixData,saemixModel,saemixControl,saemix
实例----------Examples----------
showClass("SaemixModel")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|