找回密码
 注册
查看: 460|回复: 0

R语言 RWeka包 Weka_associators()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 20:55:42 | 显示全部楼层 |阅读模式
Weka_associators(RWeka)
Weka_associators()所属R语言包:RWeka

                                        R/Weka Associators
                                         / Weka中ASSOCIATORS的

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

R interfaces to Weka association rule learning algorithms.
R接口Weka中的关联规则学习算法。


用法----------Usage----------


Apriori(x, control = NULL)
Tertius(x, control = NULL)



参数----------Arguments----------

参数:x
an R object with the data to be associated.
的R与数据对象相关联。


参数:control
an object of class Weka_control, or a character vector of control options, or NULL (default). Available options can be obtained on-line using the Weka Option Wizard WOW, or the Weka documentation.
对象的类Weka_control,或一个字符矢量控制选项,或NULL(默认)。可用的选项可以使用在WEKA选项向导WOW,或在WEKA文档上线。


Details

详细信息----------Details----------

Apriori implements an Apriori-type algorithm, which iteratively reduces the minimum support until it finds the required number of rules with the given minimum confidence.
Apriori实现Apriori算法类型的算法,反复地减少了最小的支持,直到找到所需的数量与给定的最小置信度的规则。

Tertius implements a Tertius-type algorithm.
Tertius实现了特尔蒂乌斯型算法。

See the references for more information on these algorithms.
这些算法的更多信息,请参考相关手册。


值----------Value----------

A list inheriting from class Weka_associators with components including
继承类Weka_associators组件,包括列表


参数:associator
a reference (of class jobjRef) to a Java object obtained by applying the Weka buildAssociations method to the training instances using the given control options.
参考(类jobjRef)将在WEKA buildAssociations方法的培训的情况下使用给定的控制选项到一个Java对象。


注意----------Note----------

Tertius requires Weka package tertius to be installed.
Tertius需要Weka中包tertius被安装。


参考文献----------References----------

Fast algorithms for mining association rules in large databases. Proceedings of the  International Conference on Very Large Databases, 478–499. Santiago, Chile: Morgan Kaufmann, Los Altos, CA.
Confirmation-guided discovery of first-order rules with Tertius. Machine Learning, 42, 61–95.
Data Mining: Practical Machine Learning Tools and Techniques. 2nd Edition, Morgan Kaufmann, San Francisco.

实例----------Examples----------


x <- read.arff(system.file("arff", "contact-lenses.arff",
                           package = "RWeka"))
## Apriori with defaults.[#Apriori算法为默认设置。]
Apriori(x)
## Some options: set required number of rules to 20.[#设置一些选项:所需数量的规则20。]

Apriori(x, Weka_control(N = 20))

## Not run: [#不运行:]
## Requires Weka package 'Tertius' to be installed.[#需要Weka中包“特尔蒂乌斯要安装。]
## Tertius with defaults.[#特尔蒂乌斯为默认设置。]
Tertius(x)
## Some options: only classification rules (single item in the RHS).[#一些选项:只分类规则(单个项目的RHS)。]

Tertius(x, Weka_control(S = TRUE))

## End(Not run)[#(不执行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-28 18:43 , Processed in 0.025208 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表