GMMTest(rugarch)
GMMTest()所属R语言包:rugarch
The GMM Orthogonality Test of Hansen
GMM正交试验汉森
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Implements the GMM Orthogonality Test of Hansen.
汉森实现GMM正交试验。
用法----------Usage----------
GMMTest(z, lags = 1, skew=0, kurt=0, conf.level = 0.95)
参数----------Arguments----------
参数:z
A numeric vector the standardized residuals.
一个数值向量的标准化残差。
参数:lags
The number of lags to test for.
的数目滞后测试。
参数:skew
The skewness of the standardized residuals (derived from the estimated model). This can be either a scalar or numeric vector the same size as z.
标准化残差的偏度(来自估计模型)。这可以是一个标量或数值向量为z的大小相同。
参数:kurt
The kurtosis (not excess) of the standardized residuals (derived from the estimated model). This can be either a scalar or numeric vector the same size as z.
的标准化残差(估计模型来自)的峰度(不超过)。这可以是一个标量或数值向量为z的大小相同。
参数:conf.level
The confidence level at which the Null Hypothesis is evaluated.
在零假设被评估的置信水平。
Details
详细信息----------Details----------
This is a mispecification test based on Hansen's GMM procedure. Under a correctly specified model, certain population moment conditions should be satisfied and hold in the sample using the standardized residuals. The moment conditions can be tested both individually using a t-test or jointly using a Wald test (the vignette gives more details). The test returns a matrix containing the first 4 moments statistics, their standard error and t-values, "M1" to "M4", the t-value of the test of the the joint squared residuals under the specified number of lags, "Q2" , and the t-value of the test of joint nullness, "J". The joint tests ("Q2" and "J") are distributed chi-squared with n.lag and 4 + n.lag d.o.f. respectively, while the individual moment conditions may be tested for significance using a standard t-test.
这是一个汉森的GMM程序的基础上mispecification测试。正确指定的模型下,某些人口矩条件得到满足,并保持样品中使用的标准化残差。矩条件进行测试,无论是单独使用t检验或共同使用Wald检验(小插曲提供了更多的细节)。测试返回一个矩阵包含第4的时刻统计,它们的标准误差和t值,“M1”M4,根据指定的滞后阶数的测试的联合的残差平方的t值, Q2,和联合空值的,“J”的测试的t值。 (Q2和J)的联合测试卡方分布n.lag和4 + n.lag的自由度分别,同时个别时刻的条件可以使用一个标准的t-试验进行显着性测试。
值----------Value----------
A list with the following items:<br>
以下项目:参考列表
参数:statmat
The matrix of the statistics (see details).
矩阵的统计数据(见详情)。
参数:H0
The Null Hypothesis.
零假设。
参数:critical.value
The critical value for each statistic.
的每项统计的临界值。
参数:Decision
Whether to reject or not the Null given the conf.level.
无论是拒绝还是不空的conf.level。
(作者)----------Author(s)----------
Alexios Ghalanos
参考文献----------References----------
Estimators, Econometrica, 50(4), 1029–1054.
实例----------Examples----------
## Not run: [#不运行:]
data(dji30ret)
spec = ugarchspec(mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
variance.model = list(model = "gjrGARCH"), distribution.model = "sstd")
fit = ugarchfit(spec, data = dji30ret[, 1, drop = FALSE])
z = residuals(fit)\/sigma(fit)
skew = dskewness("sstd",skew = coef(fit)["skew"], shape= coef(fit)["shape"])
# add back 3 since dkurtosis returns the excess kurtosis[加回3 dkurtosis返回多余的峰度]
kurt = 3+dkurtosis("sstd",skew = coef(fit)["skew"], shape= coef(fit)["shape"])
print(GMMTest(z, lags = 1, skew=skew, kurt=kurt))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|