autoThreshold(rtiff)
autoThreshold()所属R语言包:rtiff
Suggests threshold levels to use in binarizing an image channel.
建议的阈值水平,使用二值化图像通道。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This is an implementation of the Ridler method for binarization (see references). NOTE: The order of the values returned did not match what is described in the "value" section below. This is fixed in this version.
这是一个实现的里德勒进行二值化的方法(请参阅参考资料)。注意:返回的值的顺序不匹配的“价值”一节中的描述。这是固定在这个版本。
用法----------Usage----------
autoThreshold(d.m, est = 0.5)
参数----------Arguments----------
参数:d.m
A data matrix representing the pixel intensities for a single image channel (e.g. readTiff("image.tif")@red).
数据矩阵信道(例如readTiff(“image.tif”)@红)为一个单一的形象代表的像素强度。
参数:est
The initial thresholding estimate to work from. The default only works if the pixel intensities are between 0 and 1, otherwise the mean intensity of the entire channel is likely a reasonable starting point. The selection of the estimate should not influence the final threshold selected.
初始阈值的估计。默认情况下,只有工作,如果像素的强度是0和1之间,否则整个渠道的平均强度可能是一个合理的起点。估计的选择,不应该影响选择的最后一道阈值。
值----------Value----------
A vector (v) of estimates, the 3rd element of which is the true Ridler estimate. However, experience demonstrates that sometimes a lower (elements 1 or 2) or higher (elements 4 or 5) estimate performs better for a given application. The Ridler estimate is the mean between the average intensity of bright regions in the raster and the average intensity of dim regions. This is v[3]. v[1] is the average of dim regions, v[5] is the average of dim regions, and v[2] and v[4] are the mean between the Ridler estimate and v[1] and v[2], respectively.
一个向量(V)的估计,其中第三个元素是真正的Ridler估计。然而,经验表明,有时低级(元件1或2)或更高(元件4或5)估计为一个给定的应用程序执行得更好。的的里德勒估计是明亮区域的平均强度在光栅和昏暗区域的平均强度之间的平均。这是v [3]。 V [1]是暗淡的区域,V [5]是暗淡区域的平均,和V [2]和v [4]是里德勒估计和v之间的平均值[1]和v [2],平均分别。
(作者)----------Author(s)----------
Eric Kort <eric.kort@vai.org>
参考文献----------References----------
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|