jordan(RSNNS)
jordan()所属R语言包:RSNNS
Create and train a Jordan network
建立和培养了约旦网络
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Jordan networks are partially recurrent networks and similar to Elman networks (see elman). Partially recurrent networks are useful when working with time series data. I.e., when the output of the network not only should depend on the current pattern, but also on the patterns
约旦网络部分经常性的网络和类似的Elman网络(见elman“)。工作时间序列数据部分经常性的网络时非常有用。即,当输出的网络不仅应该依赖于当前的模式,而且还对图案
用法----------Usage----------
## Default S3 method:[默认方法]
jordan(x, y, size=c(5), maxit=100, initFunc="JE_Weights", initFuncParams=c(1,
-1, 0.3, 1, 0.5), learnFunc="JE_BP", learnFuncParams=c(0.2),
updateFunc="JE_Order", updateFuncParams=c(0), shufflePatterns=TRUE,
linOut=TRUE, inputsTest, targetsTest, ...)
参数----------Arguments----------
参数:x
a matrix with training inputs for the network
矩阵的网络培训投入
参数:y
the corresponding targets values
相应的指标值
参数:size
number of units in the hidden layer(s)
隐藏层中的单位数目(S)
参数:maxit
maximum of iterations to learn
最大的迭代学习
参数:initFunc
the initialization function to use
使用初始化函数
参数:initFuncParams
the parameters for the initialization function
初始化函数的参数
参数:learnFunc
the learning function to use
学习功能使用
参数:learnFuncParams
the parameters for the learning function
学习功能的参数
参数:updateFunc
the update function to use
使用更新功能
参数:updateFuncParams
the parameters for the update function
更新功能的参数
参数:shufflePatterns
should the patterns be shuffled?
应的模式被打乱?
参数:linOut
sets the activation function of the output units to linear or logistic
设置的激活函数的输出单元的直链或MF
参数:inputsTest
a matrix with inputs to test the network
测试网络的输入矩阵
参数:targetsTest
the corresponding targets for the test input
测试输入相应的目标
参数:...
additional function parameters (currently not used)
附加功能参数(目前没有使用)
Details
详细信息----------Details----------
jordan: Learning on Jordan networks: Backpropagation algorithms for feed-forward networks can be adapted for their use with this type of networks. In SNNS, there exist adapted versions of several backpropagation-type algorithms for Jordan and Elman networks.
jordan:约旦网络:反向传播算法的前馈网络学习可以适用于使用该类型的网络。在SNNS,存在的几个反向传播算法,约旦和Elman网络的改编版本。
Network architecture: A Jordan network can be seen as a feed-forward network with additional context units in the input layer. These context units take input from themselves (direct feedback), and from the output units. The context units save the current state of the net. In a Jordan net, the number of context units and output units has to be the same.
可以被看作是在输入层与附加上下文单位的前馈网络的网络架构:甲约旦网络。这些上下文从自己的直接反馈,需要输入和输出单位。的范围内单位的净保存当前的状态。以一个Jordan网,上下文单元和输出单元的数目是相同的。
Initialization of Jordan and Elman nets should be done with the default init function JE_Weights, which has five parameters. The first two parameters define an interval from which the forward connections are randomly chosen. The third parameter gives the self-excitation weights of the context units. The fourth parameter gives the weights of context units between them, and the fifth parameter gives the initial activation of context units.
缺省的init函数JE_Weights,其中有五个参数初始化约旦和Elman网应该做的。前两个参数定义的时间间隔是随机选择的正向连接。第三个参数给出了自激的上下文单元的权重。第四个参数给出了它们之间的上下文单位的重量,和第五个参数给出的上下文单元的初始活化。
Learning functions are JE_BP, JE_BP_Momentum, JE_Quickprop, and JE_Rprop, which are all adapted versions of their standard-procedure counterparts. Update functions that can be used are JE_Order and JE_Special.
学习功能是JE_BP,JE_BP_Momentum,JE_Quickprop和JE_Rprop,这都是改编版本的标准程序。更新功能,可用于JE_Order和JE_Special。
A detailed description of the theory and the parameters is available, as always, from the SNNS documentation and the other referenced literature.
的理论和参数的详细说明,一如既往,,从SNNS文件和其他参考文献。
值----------Value----------
jordan.default: an rsnns object.
jordan.default:rsnns对象。
参考文献----------References----------
http://www.ra.cs.uni-tuebingen.de/SNNS/
<h3>See Also</h3>
实例----------Examples----------
## Not run: demo(laser)[#不运行演示(激光)]
## Not run: demo(eight_elman)[#不运行:演示(eight_elman)]
## Not run: demo(eight_elmanSnnsR)[#不运行:演示(eight_elmanSnnsR)]
data(snnsData)
inputs <- snnsData$laser_1000.pat[,inputColumns(snnsData$laser_1000.pat)]
outputs <- snnsData$laser_1000.pat[,outputColumns(snnsData$laser_1000.pat)]
patterns <- splitForTrainingAndTest(inputs, outputs, ratio=0.15)
modelJordan <- jordan(patterns$inputsTrain, patterns$targetsTrain,
size=c(8), learnFuncParams=c(0.1), maxit=100,
inputsTest=patterns$inputsTest,
targetsTest=patterns$targetsTest, linOut=FALSE)
names(modelJordan)
par(mfrow=c(3,3))
plotIterativeError(modelJordan)
plotRegressionError(patterns$targetsTrain, modelJordan$fitted.values)
plotRegressionError(patterns$targetsTest, modelJordan$fittedTestValues)
hist(modelJordan$fitted.values - patterns$targetsTrain, col="lightblue")
plot(inputs, type="l")
plot(inputs[1:100], type="l")
lines(outputs[1:100], col="red")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|