do.aGFF.calc(ACME)
do.aGFF.calc()所属R语言包:ACME
Perform ACME calculation
执行ACME的计算
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function performs the moving window chi-square calculation. It is written in C, so is quite fast.
执行此功能的移动窗口计算卡方。这是写在C,所以是相当快的。
用法----------Usage----------
do.aGFF.calc(x, window, thresh)
参数----------Arguments----------
参数:x
An aGFF class object
aGFF类对象
参数:window
An integer value, representing the number of basepairs to include in the windowed chi-square calculation
一个整数值,代表的碱基对的数量,包括在窗口的卡方计算
参数:thresh
The quantile of the data distribution for each sample that will be used to classify a probe as positive
探针为阳性,将被用来区分每个样本数据分布的分位数
Details
详情----------Details----------
A window size on the order of 2-3 times the average size of fragments from sonication, digestion, etc. and containing at least 8-10 probes is the recommended size. Larger size windows are probably more sensitive, but obviously reduce the accuracy with which boundaries of signal can be called.
一个窗口大小的2-3倍,超声,消化等,并至少包含8-10探针片段的平均大小的顺序是推荐的大小。尺寸较大的窗口可能更为敏感,但明显减少的信号可以被称为边界的准确性。
A threshold of between 0.9 and 0.99 seems empirically to be adequate. If one plots the histogram of data values and there is an obvious better choice (such as a bimodal distribution, with one peak representing enrichment), a more data-driven approach may yield better results.
一个阈值的0.9和0.99之间,似乎是足够的经验。如果一个图的数据值的直方图,并有一个明显的更好的选择(如双峰分布,一个峰代表富集),更多的数据驱动的方法可能会产生更好的效果。
值----------Value----------
An object of class aGFFCalc
一个对象的类aGFFCalc
作者(S)----------Author(s)----------
Sean Davis <sdavis2@mail.nih.gov>
举例----------Examples----------
data(example.agff)
example.agffcalc <- do.aGFF.calc(example.agff,window=1000,thresh=0.9)
example.agffcalc
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|