ROCcurve(a4Classif)
ROCcurve()所属R语言包:a4Classif
Receiver operating curve
受试者工作曲线
译者:生物统计家园网 机器人LoveR
描述----------Description----------
A ROC curve plots the fraction of true positives (TPR = true positive rate) versus the fraction of false positives (FPR = false positive rate) for a binary classifier when the discrimination threshold is varied. Equivalently, one can also plot sensitivity versus (1 - specificity).
一个曲线图真阳性的分数与误报的分数位(FPR =假阳性率)为二元分类是多种多样的歧视阈值时(TPR =真阳性率)。等价的,也可以绘制灵敏度与(1 - 特异性)。
用法----------Usage----------
ROCcurve(object, groups, probesetId = NULL, geneSymbol = NULL, main = NULL, probe2gene = TRUE, ...)
参数----------Arguments----------
参数:object
ExpressionSet object for the experiment
ExpressionSet为实验对象
参数:groups
String containing the name of the grouping variable. This should be a the name of a column in the pData of the expressionSet object.
String,包含分组变量的名称。这应该是一个在pDataexpressionSet对象的列的名称。
参数:probesetId
The probeset ID. These should be stored in the featureNames of the expressionSet object.
probeset编号。这些应存放在featureNamesexpressionSet对象。
参数:geneSymbol
The gene symbol. These should be stored in the column `Gene Symbol` in the featureData of the expressionSet object.
基因符号。这些应存储在列Gene SymbolfeatureData对象expressionSet的。
参数:main
Main title on top of the graph
图上的主标题
参数:probe2gene
Boolean indicating whether the probeset should be translated to a gene symbol (used for the default title of the plot)
布尔值,指示的probeset是否应该被翻译成一个基因符号(用于图的默认标题)
参数:...
Possibility to add extra plot options. See par
可能性增加额外的图选项。看到par
作者(S)----------Author(s)----------
Willem Talloen
参考文献----------References----------
and http://www.anaesthetist.com/mnm/stats/roc/Findex.htm. The latter has at the bottom a nice interactive tool to scroll the cut-off and to see how it affects the FP/TP table and the ROC curve.
举例----------Examples----------
# simulated data set[模拟数据集]
esSim <- simulateData()
ROCcurve(probesetId = 'Gene.1', object = esSim, groups = 'type', addLegend = FALSE)
# ALL data set[所有数据集]
if (require(ALL)){
data(ALL, package = "ALL")
ALL <- addGeneInfo(ALL)
ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
ROCres <- ROCcurve(gene = "ABL1", object = ALL, groups = "BTtype")
}
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|