getInfRobRegTypeIC(ROptRegTS)
getInfRobRegTypeIC()所属R语言包:ROptRegTS
Generic Function for the Computation of Optimally Robust Regression-Type ICs
通用函数计算的的最优稳健回归型集成电路
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Generic function for the computation of optimally robust regression-type ICs in case of infinitesimal robust models. This function is rarely called directly.
通用功能的最佳稳健回归型芯片的情况下的无穷可靠的模型计算。很少直接调用此函数。
用法----------Usage----------
getInfRobRegTypeIC(ErrorL2deriv, Regressor, risk, neighbor, ...)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asBias,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asBias,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asBias,Av1CondTotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,Distribution,asBias,Av2CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,Distribution,asCov,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asCov,TotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)
## S4 method for signature 'UnivariateDistribution,Distribution,asCov,CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)
## S4 method for signature 'UnivariateDistribution,Distribution,asCov,CondTotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)
## S4 method for signature 'UnivariateDistribution,Distribution,asCov,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)
## S4 method for signature 'UnivariateDistribution,Distribution,asCov,Av2CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)
## S4 method for signature 'UnivariateDistribution,Distribution,asCov,Av1CondTotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)
## S4 method for signature 'UnivariateDistribution,Distribution,asGRisk,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,Distribution,asGRisk,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,Distribution,asGRisk,Av2CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,Distribution,asGRisk,Av1CondTotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,asBias,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,asBias,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,asBias,Av1CondTotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'RealRandVariable,Distribution,asBias,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorSymm, RegSymm, ErrorDistr, ErrorL2derivSymm,
ErrorL2derivDistrSymm, Finfo, trafo, upper, z.start, A.start, maxiter, tol, warn)
## S4 method for signature 'RealRandVariable,Distribution,asBias,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorSymm, RegSymm, ErrorDistr, ErrorL2derivSymm,
ErrorL2derivDistrSymm, Finfo, trafo, upper, z.start, A.start, maxiter, tol, warn)
## S4 method for signature 'RealRandVariable,Distribution,asCov,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorDistr, Finfo, trafo)
## S4 method for signature 'RealRandVariable,Distribution,asCov,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorDistr, Finfo, trafo)
## S4 method for signature 'RealRandVariable,Distribution,asGRisk,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorSymm, RegSymm, ErrorDistr, ErrorL2derivSymm,
ErrorL2derivDistrSymm, Finfo, trafo, upper, z.start, A.start, maxiter, tol, warn)
## S4 method for signature 'RealRandVariable,Distribution,asGRisk,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorSymm, RegSymm, ErrorDistr, ErrorL2derivSymm,
ErrorL2derivDistrSymm, Finfo, trafo, upper, z.start, A.start, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asUnOvShoot,UncondNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asUnOvShoot,CondNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
upper, maxiter, tol, warn)
参数----------Arguments----------
参数:ErrorL2deriv
L2-derivative of ErrorDistr.
L2衍生ErrorDistr。
参数:Regressor
regressor.
回归量。
参数:risk
object of class "RiskType".
对象类"RiskType"。
参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。
参数:...
additional parameters.
附加参数。
参数:ErrorSymm
symmetry of ErrorDistr.
对称的ErrorDistr。
参数:ErrorL2derivDistrSymm
symmetry of ErrorL2derivDistr.
对称的ErrorL2derivDistr。
参数:RegSymm
symmetry of RegDistr.
对称的RegDistr。
参数:ErrorDistr
error distribution.
误差分布。
参数:ErrorL2derivSymm
symmetry of ErrorL2deriv.
对称的ErrorL2deriv。
参数:Finfo
Fisher information matrix.
Fisher信息矩阵。
参数:trafo
matrix: transformation of the parameter.
矩阵变换的参数。
参数:upper
upper bound for the optimal clipping bound.
上界的最佳剪辑约束。
参数:maxiter
the maximum number of iterations
最大迭代次数
参数:tol
the desired accuracy (convergence tolerance).
所需的精度(收敛宽容)。
参数:warn
logical: print warnings.
逻辑:打印警告。
参数:z.start
initial value for the centering constant/function.
中心的常数/函数的初始值。
参数:A.start
initial value for the standardizing matrix.
标准化矩阵的初始值。
值----------Value----------
The optimally robust IC is computed.
计算最优鲁棒的IC。
方法----------Methods----------
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asBias", neighbor = "ContNeighborhood" computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=的“asBias”邻居=“ContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asBias", neighbor = "Av1CondContNeighborhood" computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=的“asBias”邻居=“Av1CondContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asBias", neighbor = "Av1CondTotalVarNeighborhood" computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=的“asBias”邻居=“Av1CondTotalVarNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asBias", neighbor = "Av2CondContNeighborhood" computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asBias”邻居=“Av2CondContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "ContNeighborhood" computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“ContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asCov", neighbor = "TotalVarNeighborhood" computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=的“asCov”邻居=“TotalVarNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "CondContNeighborhood" computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“CondContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "CondTotalVarNeighborhood" computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“CondTotalVarNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "Av1CondContNeighborhood" computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“Av1CondContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "Av2CondContNeighborhood" computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“Av2CondContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "Av1CondTotalVarNeighborhood" computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“Av1CondTotalVarNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asGRisk", neighbor = "ContNeighborhood" computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“风险分配”,=“asGRisk”的,邻居=“ContNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asGRisk", neighbor = "Av1CondContNeighborhood" computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“风险分配”,=“asGRisk”的,邻居=“Av1CondContNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asGRisk", neighbor = "Av2CondContNeighborhood" computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“风险分配”,=“asGRisk”的,邻居=“Av2CondContNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asGRisk", neighbor = "Av1CondTotalVarNeighborhood" computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“风险分配”,=“asGRisk”的,邻居=“Av1CondTotalVarNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。
ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", risk = "asBias", neighbor = "ContNeighborhood" computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”的风险=的“asBias”邻居=“ContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", risk = "asBias", neighbor = "Av1CondContNeighborhood" computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”的风险=的“asBias”邻居=“Av1CondContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。
ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", risk = "asBias", neighbor = "Av1CondTotalVarNeighborhood" computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”的风险=的“asBias”邻居=“Av1CondTotalVarNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。
ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asBias", neighbor = "ContNeighborhood" computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,风险的“asBias”邻居=“ContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。
ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asCov", neighbor = "ContNeighborhood" computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,风险的“asCov”邻居=“ContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。
ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asCov", neighbor = "Av1CondContNeighborhood" computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,风险的“asCov”邻居=“Av1CondContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。
ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asGRisk", neighbor = "ContNeighborhood" computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”风险=的“asGRisk”邻居=“ContNeighborhood”的计算曲线L2微回归家庭的最佳强大的影响力。
ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asGRisk", neighbor = "Av1CondContNeighborhood" computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”风险=的“asGRisk”邻居=“Av1CondContNeighborhood”的计算曲线L2微回归家庭的最佳强大的影响力。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asUnOvShoot", neighbor = "UncondNeighborhood" computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=“asUnOvShoot”的,邻居=“UncondNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asUnOvShoot", neighbor = "CondNeighborhood" computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=“asUnOvShoot”的,邻居=“CondNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。
(作者)----------Author(s)----------
Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>
参考文献----------References----------
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
参见----------See Also----------
InfRobRegTypeModel-class
InfRobRegTypeModel-class
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|