getInfGammaRegTS(ROptRegTS)
getInfGammaRegTS()所属R语言包:ROptRegTS
Generic Function for the Computation of the Optimal Clipping Bound
通用功能的最优裁剪绑定的计算
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Generic function for the computation of the optimal clipping bound. This function is rarely called directly. It is called by getInfClipRegTS to compute optimally robust ICs.
通用函数的计算绑定的最佳剪辑。很少直接调用此函数。这就是所谓的getInfClipRegTS的来计算最佳强大的IC。
用法----------Usage----------
getInfGammaRegTS(ErrorL2deriv, Regressor, risk, neighbor, ...)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asMSE,ContNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, z.comp, stand, cent, clip)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asMSE,Av1CondContNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, z.comp, stand, cent, clip)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asMSE,Av1CondTotalVarNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, z.comp, stand, cent, clip)
## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,asMSE,ContNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, z.comp, stand, cent, clip)
## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,asMSE,Av1CondContNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, z.comp, stand, cent, clip)
## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,asMSE,Av1CondTotalVarNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, z.comp, stand, cent, clip)
## S4 method for signature 'UnivariateDistribution,Distribution,asMSE,Av2CondContNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, z.comp, stand, cent, clip)
## S4 method for signature 'RealRandVariable,Distribution,asMSE,ContNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, ErrorDistr, stand, cent, clip)
## S4 method for signature 'RealRandVariable,Distribution,asMSE,Av1CondContNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, ErrorDistr, stand, cent, clip)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asUnOvShoot,ContNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, cent, clip)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asUnOvShoot,TotalVarNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, cent, clip)
## S4 method for signature 'UnivariateDistribution,numeric,asUnOvShoot,CondContNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, clip)
## S4 method for signature 'UnivariateDistribution,numeric,asUnOvShoot,CondTotalVarNeighborhood'
getInfGammaRegTS(ErrorL2deriv,
Regressor, risk, neighbor, clip)
参数----------Arguments----------
参数:ErrorL2deriv
L2-derivative of ErrorDistr.
L2衍生ErrorDistr。
参数:Regressor
regressor.
回归量。
参数:risk
object of class "RiskType".
对象类"RiskType"。
参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。
参数:...
additional parameters.
附加参数。
参数:clip
optimal clipping bound.
最佳剪裁的约束。
参数:cent
optimal centering constant/function.
最佳定心常数/功能。
参数:stand
standardizing matrix.
规范矩阵。
参数:z.comp
which components of the centering constant/function have to be computed.
定心的常数/功能的组成部分有以被计算。
参数:ErrorDistr
error distribution.
误差分布。
Details
详细信息----------Details----------
The function is used in case of asymptotic G-risks; confer Ruckdeschel and Rieder (2004).
渐近G-风险;赋予Ruckdeschel和里德尔(2004年)的情况下,在使用该功能。
方法----------Methods----------
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asMSE", neighbor = "ContNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=“asMSE”的,邻居=的“ContNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asMSE", neighbor = "Av1CondContNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=“asMSE”的,邻居=的“Av1CondContNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asMSE", neighbor = "Av1CondTotalVarNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=“asMSE”的,邻居=的“Av1CondTotalVarNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", risk = "asMSE", neighbor = "ContNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”的风险=“asMSE”的,邻居=的“ContNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", risk = "asMSE", neighbor = "Av1CondContNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”的风险=“asMSE”的,邻居=的“Av1CondContNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", risk = "asMSE", neighbor = "Av1CondTotalVarNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”的风险=“asMSE”的,邻居=的“Av1CondTotalVarNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asMSE", neighbor = "Av2CondContNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“风险分配”,=“asMSE”的,邻居=的“Av2CondContNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asMSE", neighbor = "ContNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,的风险=“asMSE”的,邻居=的“ContNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asMSE", neighbor = "Av1CondContNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,的风险=“asMSE”的,邻居=的“Av1CondContNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asUnOvShoot", neighbor = "ContNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=“asUnOvShoot”的,邻居=的“ContNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asUnOvShoot", neighbor = "TotalVarNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=“asUnOvShoot”的,邻居=的“TotalVarNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "UnivariateDistribution", Regressor = "numeric", risk = "asUnOvShoot", neighbor = "CondContNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“数字”,风险的“asUnOvShoot”,邻居=的“CondContNeighborhood”使用getInfClipRegTS。
ErrorL2deriv = "UnivariateDistribution", Regressor = "numeric", risk = "asUnOvShoot", neighbor = "CondTotalVarNeighborhood" used by getInfClipRegTS.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“数字”,风险的“asUnOvShoot”,邻居=的“CondTotalVarNeighborhood”使用getInfClipRegTS。
(作者)----------Author(s)----------
Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>
参考文献----------References----------
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statistics & Decisions (submitted).
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
参见----------See Also----------
asMSE-class, asUnOvShoot-class, ContIC-class, Av1CondContIC-class, Av2CondContIC-class, Av1CondTotalVarIC-class,
asMSE-class,asUnOvShoot-class,ContIC-class,Av1CondContIC-class,Av2CondContIC-class,Av1CondTotalVarIC-class,
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|