getInfCentRegTS(ROptRegTS)
getInfCentRegTS()所属R语言包:ROptRegTS
Generic Function for the Computation of the Optimal Centering Constant/Function resp.
通用函数计算的最优中心恒/功能;。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Generic function for the computation of the optimal centering constant/function (contamination neighborhoods) respectively, of the optimal lower clipping bound/function (total variation neighborhoods). This function is rarely called directly. It is used to compute optimally robust ICs.
定心的最佳常数/功能(污染街道)分别计算,通用功能的最佳剪裁绑定/功能(总变化街区)。很少直接调用此函数。它被用来计算最佳鲁棒的IC。
用法----------Usage----------
getInfCentRegTS(ErrorL2deriv, Regressor, neighbor, ...)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,ContNeighborhood'
getInfCentRegTS(ErrorL2deriv,
Regressor, neighbor, clip, cent, stand, z.comp)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,TotalVarNeighborhood'
getInfCentRegTS(ErrorL2deriv,
Regressor, neighbor, clip, cent, z.comp)
## S4 method for signature 'UnivariateDistribution,numeric,CondTotalVarNeighborhood'
getInfCentRegTS(ErrorL2deriv,
Regressor, neighbor, clip, cent, z.comp)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,Av1CondContNeighborhood'
getInfCentRegTS(ErrorL2deriv,
Regressor, neighbor, clip, cent, stand, z.comp, x.vec)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,Av1CondTotalVarNeighborhood'
getInfCentRegTS(ErrorL2deriv,
Regressor, neighbor, clip, cent, stand, z.comp, x.vec, tol.z)
## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,ContNeighborhood'
getInfCentRegTS(ErrorL2deriv,
Regressor, neighbor, clip, cent, stand, z.comp)
## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,Av1CondContNeighborhood'
getInfCentRegTS(ErrorL2deriv,
Regressor, neighbor, clip, cent, stand, z.comp, x.vec)
## S4 method for signature 'UnivariateDistribution,Distribution,Av2CondContNeighborhood'
getInfCentRegTS(ErrorL2deriv,
Regressor, neighbor, clip, cent, stand, z.comp, tol.z)
## S4 method for signature 'RealRandVariable,Distribution,ContNeighborhood'
getInfCentRegTS(ErrorL2deriv,
Regressor, neighbor, ErrorDistr, stand, cent, clip, z.comp)
## S4 method for signature 'RealRandVariable,Distribution,Av1CondContNeighborhood'
getInfCentRegTS(ErrorL2deriv,
Regressor, neighbor, ErrorDistr, stand, cent, clip, z.comp, x.vec)
参数----------Arguments----------
参数:ErrorL2deriv
L2-derivative of ErrorDistr.
L2衍生ErrorDistr。
参数:Regressor
regressor.
回归量。
参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。
参数:...
additional parameters.
附加参数。
参数:clip
optimal clipping bound.
最佳剪裁的约束。
参数:cent
optimal centering constant/function.
最佳定心常数/功能。
参数:stand
standardizing matrix.
规范矩阵。
参数:z.comp
which components of the centering constant/function have to be computed.
定心的常数/功能的组成部分有以被计算。
参数:x.vec
(approximated) support of Regressor.
(近似)的支持Regressor。
参数:tol.z
the desired accuracy (convergence tolerance).
所需的精度(收敛宽容)。
参数:ErrorDistr
error distribution.
误差分布。
值----------Value----------
The optimal centering constant/function is computed.
中心的最佳常数/函数被计算。
方法----------Methods----------
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "ContNeighborhood" computation of optimal centering constant.
ErrorL2deriv =“UnivariateDistribution”,次,REGRESSOR =的“UnivariateDistribution”,邻居=的“ContNeighborhood”最佳围绕常数的计算。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "TotalVarNeighborhood" computation of lower clipping bound.
ErrorL2deriv =“UnivariateDistribution”,次,REGRESSOR =“UnivariateDistribution”,邻居=的“TotalVarNeighborhood”计算较低的剪裁约束。
ErrorL2deriv = "UnivariateDistribution", Regressor = "numeric", neighbor = "CondTotalVarNeighborhood" computation of lower clipping bound.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“数字”,邻居=“CondTotalVarNeighborhood”计算的较低的剪裁绑定。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "Av1CondContNeighborhood" computation of optimal centering function.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”,邻居=“Av1CondContNeighborhood”计算的最佳定心功能。
ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "Av1CondTotalVarNeighborhood" computation of optimal lower clipping function.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”,邻居=“Av1CondTotalVarNeighborhood”计算的最佳较低的裁剪功能。
ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", neighbor = "ContNeighborhood" computation of optimal centering constant.
ErrorL2deriv =“UnivariateDistribution”,次,REGRESSOR =的“MultivariateDistribution”,邻居=的“ContNeighborhood”最佳围绕常数的计算。
ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", neighbor = "Av1CondContNeighborhood" computation of optimal centering function.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”,邻居=“Av1CondContNeighborhood”计算的最佳定心功能。
ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", neighbor = "Av1CondTotalVarNeighborhood" computation of optimal lower clipping function.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”,邻居=“Av1CondTotalVarNeighborhood”计算的最佳较低的裁剪功能。
ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", neighbor = "Av2CondContNeighborhood" computation of optimal centering constant.
ErrorL2deriv =“UnivariateDistribution”的,的回归量=“分配”,邻居=“Av2CondContNeighborhood”最佳围绕常数的计算。
ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", neighbor = "ContNeighborhood" computation of optimal centering constant.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,邻居=的“ContNeighborhood”最佳围绕常数的计算。
ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", neighbor = "Av1CondContNeighborhood" computation of optimal centering function.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,邻居=的“Av1CondContNeighborhood”计算最佳的调心功能。
(作者)----------Author(s)----------
Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>
参考文献----------References----------
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
参见----------See Also----------
ContIC-class, Av1CondContIC-class, Av2CondContIC-class, Av1CondTotalVarIC-class,
ContIC-class,Av1CondContIC-class,Av2CondContIC-class,Av1CondTotalVarIC-class,
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|