getAsRiskRegTS(ROptRegTS)
getAsRiskRegTS()所属R语言包:ROptRegTS
Generic Function for Computation of Asymptotic Risks in case of Regression-Type Models
通用函数计算的情况下,回归类模型的渐近风险
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Generic function for the computation of asymptotic risks in case of regression-type models. This function is rarely called directly. It is used by other functions.
回归模型的渐近风险的情况下计算的通用功能。很少直接调用此函数。它被用来由其它函数。
用法----------Usage----------
getAsRiskRegTS(risk, ErrorL2deriv, Regressor, neighbor, ...)
## S4 method for signature 'asMSE,UnivariateDistribution,Distribution,Neighborhood'
getAsRiskRegTS(risk, ErrorL2deriv,
Regressor, neighbor, clip, cent, stand, trafo)
## S4 method for signature 'asMSE,UnivariateDistribution,Distribution,Av2CondContNeighborhood'
getAsRiskRegTS(risk, ErrorL2deriv,
Regressor, neighbor, clip, cent, stand, trafo)
## S4 method for signature 'asMSE,EuclRandVariable,Distribution,Neighborhood'
getAsRiskRegTS(risk, ErrorL2deriv,
Regressor, neighbor, clip, cent, stand, trafo)
## S4 method for signature 'asBias,UnivariateDistribution,UnivariateDistribution,ContNeighborhood'
getAsRiskRegTS(risk, ErrorL2deriv,
Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)
## S4 method for signature 'asBias,UnivariateDistribution,UnivariateDistribution,Av1CondContNeighborhood'
getAsRiskRegTS(risk,
ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)
## S4 method for signature 'asBias,UnivariateDistribution,UnivariateDistribution,Av1CondTotalVarNeighborhood'
getAsRiskRegTS(risk,
ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)
## S4 method for signature 'asBias,UnivariateDistribution,MultivariateDistribution,ContNeighborhood'
getAsRiskRegTS(risk,
ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)
## S4 method for signature 'asBias,UnivariateDistribution,MultivariateDistribution,Av1CondContNeighborhood'
getAsRiskRegTS(risk,
ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)
## S4 method for signature 'asBias,UnivariateDistribution,MultivariateDistribution,Av1CondTotalVarNeighborhood'
getAsRiskRegTS(risk,
ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)
## S4 method for signature 'asBias,UnivariateDistribution,Distribution,Av2CondContNeighborhood'
getAsRiskRegTS(risk,
ErrorL2deriv, Regressor, neighbor, ErrorL2derivDistrSymm, trafo, maxiter, tol)
## S4 method for signature 'asBias,RealRandVariable,Distribution,ContNeighborhood'
getAsRiskRegTS(risk,
ErrorL2deriv, Regressor, neighbor, ErrorDistr, trafo, z.start, A.start, maxiter, tol)
## S4 method for signature 'asBias,RealRandVariable,Distribution,Av1CondContNeighborhood'
getAsRiskRegTS(risk,
ErrorL2deriv, Regressor, neighbor, ErrorDistr, trafo, z.start, A.start, maxiter, tol)
## S4 method for signature 'asUnOvShoot,UnivariateDistribution,UnivariateDistribution,UncondNeighborhood'
getAsRiskRegTS(risk,
ErrorL2deriv, Regressor, neighbor, clip, cent, stand)
## S4 method for signature 'asUnOvShoot,UnivariateDistribution,UnivariateDistribution,CondNeighborhood'
getAsRiskRegTS(risk,
ErrorL2deriv, Regressor, neighbor, clip, cent, stand)
参数----------Arguments----------
参数:risk
object of class "asRisk".
对象类"asRisk"。
参数:ErrorL2deriv
L2-derivative of ErrorDistr.
L2衍生ErrorDistr。
参数:Regressor
regressor.
回归量。
参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。
参数:...
additional parameters.
附加参数。
参数:clip
optimal clipping bound.
最佳剪裁的约束。
参数:cent
optimal centering constant/function.
最佳定心常数/功能。
参数:stand
standardizing matrix.
规范矩阵。
参数:trafo
matrix: transformation of the parameter.
矩阵变换的参数。
参数:ErrorDistr
error distribution.
误差分布。
参数:ErrorL2derivDistrSymm
symmetry of ErrorL2derivDistr.
对称的ErrorL2derivDistr。
参数:maxiter
the maximum number of iterations
最大迭代次数
参数:tol
the desired accuracy (convergence tolerance).
所需的精度(收敛宽容)。
参数:z.start
initial value for the centering constant/function.
中心的常数/函数的初始值。
参数:A.start
initial value for the standardizing matrix.
标准化矩阵的初始值。
值----------Value----------
The asymptotic risk is computed.
的渐近计算风险。
方法----------Methods----------
risk = "asMSE", ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", neighbor = "Neighborhood" computes asymptotic mean square error in methods for function getInfRobRegTypeIC.
风险=“asMSE”的,ErrorL2deriv =“UnivariateDistribution”,回归量=“分配”,邻居=“邻居”计算函数getInfRobRegTypeIC渐近均方误差的方法。
risk = "asMSE", ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", neighbor = "Av2CondContNeighborhood" computes asymptotic mean square error in methods for function getInfRobRegTypeIC.
风险=“asMSE”的,ErrorL2deriv =“UnivariateDistribution”,回归量=“分配”,邻居=“Av2CondContNeighborhood”计算函数getInfRobRegTypeIC渐近均方误差的方法。
risk = "asMSE", ErrorL2deriv = "EuclRandVariable", Regressor = "Distribution", neighbor = "Neighborhood" computes asymptotic mean square error in methods for function getInfRobRegTypeIC.
风险=“asMSE”,ErrorL2deriv =“EuclRandVariable”,REGRESSOR =“分配”邻居“邻居”计算功能getInfRobRegTypeIC渐近均方误差的方法。
risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "ContNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”,邻居=“ContNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。
risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "Av1CondContNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”,邻居=“Av1CondContNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。
risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "Av1CondTotalVarNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”,邻居=“Av1CondTotalVarNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。
risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", neighbor = "ContNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”,邻居=“ContNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。
risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", neighbor = "Av1CondContNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”,邻居=“Av1CondContNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。
risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", neighbor = "Av1CondTotalVarNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”,邻居=“Av1CondTotalVarNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。
risk = "asBias", ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", neighbor = "Av2CondContNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,邻居=“Av2CondContNeighborhood”计算标准化的渐近偏差的方法函数getInfRobRegTypeIC。
risk = "asBias", ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", neighbor = "ContNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,邻居=“ContNeighborhood”计算标准的渐近偏差的方法函数getInfRobRegTypeIC。
risk = "asBias", ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", neighbor = "Av1CondContNeighborhood" computes standardized asymptotic bias in methods for function getInfRobRegTypeIC.
风险=“asBias”,ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,邻居=“Av1CondContNeighborhood”计算标准的渐近偏差的方法函数getInfRobRegTypeIC。
risk = "asUnOvShoot", ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "UncondNeighborhood" computes asymptotic under-/overshoot risk in methods for function getInfRobRegTypeIC.
风险=“asUnOvShoot”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR,邻居=“UnivariateDistribution”=“UncondNeighborhood”,计算渐近under-/overshoot风险为函数getInfRobRegTypeIC的方法。
risk = "asUnOvShoot", ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", neighbor = "CondNeighborhood" computes asymptotic under-/overshoot risk in methods for function getInfRobRegTypeIC.
风险=“asUnOvShoot”,ErrorL2deriv =“UnivariateDistribution”,REGRESSOR,邻居=“UnivariateDistribution”=“CondNeighborhood”,计算渐近under-/overshoot风险为函数getInfRobRegTypeIC的方法。
(作者)----------Author(s)----------
Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>
参考文献----------References----------
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statistics & Decisions (submitted).
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
参见----------See Also----------
asRisk-class
asRisk-class
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|