找回密码
 注册
查看: 488|回复: 0

R语言 ROptEstOld包 getRiskIC()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 23:07:57 | 显示全部楼层 |阅读模式
getRiskIC(ROptEstOld)
getRiskIC()所属R语言包:ROptEstOld

                                        Generic function for the computation of a risk for an IC
                                         通用的风险计算功能的IC

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Generic function for the computation of a risk for an IC.
通用的计算功能,为IC的风险。


用法----------Usage----------


getRiskIC(IC, risk, neighbor, L2Fam, ...)

## S4 method for signature 'IC,asCov,missing,missing'
getRiskIC(IC, risk, tol = .Machine$double.eps^0.25)

## S4 method for signature 'IC,asCov,missing,L2ParamFamily'
getRiskIC(IC, risk, L2Fam, tol = .Machine$double.eps^0.25)

## S4 method for signature 'IC,trAsCov,missing,missing'
getRiskIC(IC, risk, tol = .Machine$double.eps^0.25)

## S4 method for signature 'IC,trAsCov,missing,L2ParamFamily'
getRiskIC(IC, risk, L2Fam, tol = .Machine$double.eps^0.25)

## S4 method for signature 'IC,asBias,ContNeighborhood,missing'
getRiskIC(IC, risk, neighbor, tol = .Machine$double.eps^0.25)

## S4 method for signature 'IC,asBias,ContNeighborhood,L2ParamFamily'
getRiskIC(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)

## S4 method for signature 'IC,asBias,TotalVarNeighborhood,missing'
getRiskIC(IC, risk, neighbor, tol = .Machine$double.eps^0.25)

## S4 method for signature 'IC,asBias,TotalVarNeighborhood,L2ParamFamily'
getRiskIC(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)

## S4 method for signature 'IC,asMSE,UncondNeighborhood,missing'
getRiskIC(IC, risk, neighbor, tol = .Machine$double.eps^0.25)

## S4 method for signature 'IC,asMSE,UncondNeighborhood,L2ParamFamily'
getRiskIC(IC, risk, neighbor, L2Fam, tol = .Machine$double.eps^0.25)

## S4 method for signature 'TotalVarIC,asUnOvShoot,UncondNeighborhood,missing'
getRiskIC(IC, risk, neighbor)

## S4 method for signature 'IC,fiUnOvShoot,ContNeighborhood,missing'
getRiskIC(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")

## S4 method for signature 'IC,fiUnOvShoot,TotalVarNeighborhood,missing'
getRiskIC(IC, risk, neighbor, sampleSize, Algo = "A", cont = "left")



参数----------Arguments----------

参数:IC
object of class "InfluenceCurve"
对象的类"InfluenceCurve"


参数:risk
object of class "RiskType".
对象类"RiskType"。


参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。


参数:L2Fam
object of class "L2ParamFamily".
对象类"L2ParamFamily"。


参数:...
additional parameters
额外的参数


参数:tol
the desired accuracy (convergence tolerance).  
所需的精度(收敛宽容)。


参数:sampleSize
integer: sample size.
整数:样本量。


参数:Algo
"A" or "B".
“A”或“B”。


参数:cont
"left" or "right".
“左”或“右”。


Details

详细信息----------Details----------

To make sure that the results are valid, it is recommended to include an additional check of the IC properties of IC
以确保结果是有效的,则建议包括一个额外的检查的集成电路性能的IC


值----------Value----------

The risk of an IC is computed.
计算的IC的风险。


方法----------Methods----------

  


IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "missing"  asymptotic covariance of IC.
IC =“IC”风险=“asCov”,邻居=“失踪”,L2Fam =“失踪”的渐近协方差IC。




IC = "IC", risk = "asCov", neighbor = "missing", L2Fam = "L2ParamFamily"  asymptotic covariance of IC under L2Fam.
IC =“IC”,风险=“asCov”邻居“失踪”,L2Fam =“L2ParamFamily的”渐近协方差IC下L2Fam。




IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "missing"  asymptotic covariance of IC.
IC =“IC”风险=“trAsCov”,邻居=“失踪”,L2Fam =“失踪”的渐近协方差IC。




IC = "IC", risk = "trAsCov", neighbor = "missing", L2Fam = "L2ParamFamily"  asymptotic covariance of IC under L2Fam.
IC =“IC”,风险=“trAsCov”邻居“失踪”,L2Fam =“L2ParamFamily的”渐近协方差IC下L2Fam。




IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "missing"  asymptotic bias of IC under convex contaminations.
IC =“IC”,风险的“asBias”,邻居=“ContNeighborhood”,L2Fam =“失踪”IC的凸污染下的渐近偏差。




IC = "IC", risk = "asBias", neighbor = "ContNeighborhood", L2Fam = "L2ParamFamily"  asymptotic bias of IC under convex contaminations and L2Fam.
IC =“IC”,的风险=“asBias”的,邻居的“ContNeighborhood”,L2Fam =“L2ParamFamily”渐近偏差的IC下凸污染和L2Fam。




IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "missing"  asymptotic bias of IC in case of total variation neighborhoods.
IC =“IC”,风险的“asBias”,邻居=“TotalVarNeighborhood”,L2Fam =“失踪”的渐近偏差IC的总变化街区的情况下。




IC = "IC", risk = "asBias", neighbor = "TotalVarNeighborhood", L2Fam = "L2ParamFamily"  asymptotic bias of IC under L2Fam in case of total variation  neighborhoods.
IC =“IC”,风险的“asBias”,邻居的“TotalVarNeighborhood”,L2Fam =“L2ParamFamily”的渐近偏差IC下L2Fam的总变化街区的情况下。




IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "missing"  asymptotic mean square error of IC.
IC =“IC”,风险的“asMSE”,邻居的“UncondNeighborhood”,L2Fam =“失踪”渐近均方误差IC。




IC = "IC", risk = "asMSE", neighbor = "UncondNeighborhood", L2Fam = "L2ParamFamily"  asymptotic mean square error of IC under L2Fam.
IC =“IC”风险=“asMSE”的,邻居=“UncondNeighborhood”,L2Fam =“L2ParamFamily”渐近均方误差IC下L2Fam。




IC = "TotalVarIC", risk = "asUnOvShoot", neighbor = "UncondNeighborhood", L2Fam = "missing"  asymptotic under-/overshoot risk of IC.
IC =“TotalVarIC的”风险=的“asUnOvShoot”,邻居的“UncondNeighborhood”,L2Fam =“失踪”IC的渐近under-/overshoot风险。




IC = "IC", risk = "fiUnOvShoot", neighbor = "ContNeighborhood", L2Fam = "missing"  finite-sample under-/overshoot risk of IC.
IC =“IC”风险=“fiUnOvShoot”的,邻居=“ContNeighborhood”,L2Fam =“失踪”的有限样本under-/overshoot风险的IC。




IC = "IC", risk = "fiUnOvShoot", neighbor = "TotalVarNeighborhood", L2Fam = "missing"  finite-sample under-/overshoot risk of IC.   
IC =“IC”风险=“fiUnOvShoot”的,邻居=“TotalVarNeighborhood”,L2Fam =“失踪”的有限样本under-/overshoot风险的IC。


注意----------Note----------

This generic function is still under construction.
这个通用的功能尚在建设中。


(作者)----------Author(s)----------


Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>



参考文献----------References----------

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269&ndash;278.
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106&ndash;115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness.  Bayreuth: Dissertation.
Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Risk  of M-estimators on Neighborhoods.

参见----------See Also----------

getRiskIC-methods, InfRobModel-class
getRiskIC-methods,InfRobModel-class

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 17:30 , Processed in 0.020652 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表