p.rocc(rocc)
p.rocc()所属R语言包:rocc
Making predictions using the ROC based classifier
使用中华民国的分类进行预测
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Class predictions of new samples using a ROC based classifier obtained by tr.rocc()
类预测新样本的ROC的分类获得通过tr.rocc()
用法----------Usage----------
p.rocc(trocc, newsample)
参数----------Arguments----------
参数:trocc
a ROC based classifier (containing the classifier specifications). This object is generated in training data using tr.rocc()
基于一个中华民国的分类(分类规格)。这个目的是产生在训练数据使用tr.rocc()
参数:newsample
a matrix containing the new samples, with genes as rows and samples as columns. rownames(g) and colnames (g) must be specified. All features of the classifier (trocc$genes) have to be present in the rownames of the matrix.
包含新样本矩阵,行和列样品的基因。 rownames(g)及colnames(G),必须指定。所有功能的分类器(trocc $基因)是存在于该矩阵的行名。
Details
详细信息----------Details----------
The classifier specifications of the trocc object from classifier training are used to classify new samples. The metagene value of the new sample is calculated using the information from trocc$positiv and trocc$negativ. If the metagene value is higher than the threshold value (obtained from trocc$cutoffvalue) the new sample is predicted to be of class 1, else to be of class 0.
规格的trocc对象从分类器训练的分类器被用于新的样本分类。新样品的metagene值计算的信息trocc $阳性和trocc的$是负面的。 ,如果metagene值高于该阈值(从trocc $ cutoffvalue获得)新样品被预测为第1类,否则是0类。
值----------Value----------
a named factor vector with levels 0 and 1 containing the predictions.
一个命名的系数向量与级别0和1的预测。
注意----------Note----------
p.rocc() requires a trocc object generated by the tr.rocc() function
p.rocc()需要trocc的对象生成由tr.rocc()函数
(作者)----------Author(s)----------
Martin Lauss
参考文献----------References----------
Lauss M, Frigyesi A, Ryden T, Hoglund M. Robust assignment of cancer subtypes from expression data using a uni-variate gene expression average as classifier. BMC Cancer 2010 (in print)
参见----------See Also----------
tr.rocc, o.rocc
tr.rocc,o.rocc
实例----------Examples----------
#### tr.rocc[###tr.rocc]
### Random Dataset and phenotype[##随机数据集和表型]
set.seed(100)
## Dataset should be a matrix[#数据集应是一个矩阵]
g <- matrix(rnorm(1000*25),ncol=25)
rownames(g) <- paste("Gene",1:1000,sep="_")
colnames(g) <- paste("Sample",1:25,sep="_")
## Phenotype should be a factor with levels 0 and 1: [#表型与0级和1应该是一个因素:]
out <- as.factor(sample(c(0:1),size=25,replace=TRUE))
predictor <- tr.rocc (g,out,xgenes=50)
## find classifier specification:[#分类规格:]
predictor$positiv
predictor$negativ
predictor$cutoffvalue
#### p.rocc[###p.rocc]
### just an example: classification of the training samples[##只是一个例子:训练样本的分类]
p.rocc(trocc=predictor,newsample=g)
predictions<-p.rocc(trocc=predictor,newsample=g)
table(predictions,out)
## all correctly classified because newsample is the training set[#全部正确分类,因为newsample是训练集]
## (try UNSEEN validation data instead)[#(试着看不见的验证数据,而不是)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|