adtest(robCompositions)
adtest()所属R语言包:robCompositions
Anderson-Darling Normality Tests
安德森 - 达令河正态性检验
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function provides three kinds of Anderson-Darling Normality Tests (Anderson and Darling, 1952).
此功能提供了三种安德森 - 达令河正态性检验(安德森和亲爱的,1952年)。
用法----------Usage----------
adtest(x, R = 1000, locscatt = "standard")
参数----------Arguments----------
参数:x
either a numeric vector, or a data.frame, or a matrix
可以是数字型的向量,或数据框,或矩阵
参数:R
Number of Monte Carlo simulations to obtain p-values
数Monte Carlo模拟得到的p值
参数:locscatt
standard for classical estimates of mean and (co)variance. robust for robust estimates using "covMcd()" from package robustbase
的标准古典平均值和(共)方差估计。强大的可靠的估计数,使用的“covMcd()从包装robustbase
Details
详细信息----------Details----------
Three version of the test are implemented (univariate, angle and radius test) and it depends on the data which test is chosen.
三种版本的测试来实现(单变量,角度和半径的测试),它依赖于所选择的测试的数据。
If the data is univariate the univariate Anderson-Darling test for normality is applied.
如果数据是单变量的一元Anderson-Darling测试正常。
If the data is bivariate the angle Anderson-Darling test for normality is performed out.
如果数据是二元的角度Anderson-Darling测试的正常进行。
If the data is multivariate the radius Anderson-Darling test for normality is used.
如果数据是多元的半径Anderson-Darling测试正常使用。
If "locscatt" is equal to “robust” then within the procedure, robust estimates of mean and covariance are provided using "covMcd()" from package robustbase.
如果locscatt是等于“健壮”,然后在该过程内的,鲁棒的均值和方差的估计中所提供使用covMcd()从包robustbase中。
To provide estimates for the corresponding p-values, i.e. to compute the probability of obtaining a result at least as extreme as the one that was actually observed under the null hypothesis, we use Monte Carlo techniques where we check how often the statistic of the underlying data is more extreme than statistics obtained from simulated normal distributed data with the same (column-wise-) mean(s) and (co)variance.
要提供相应的p值的估计,即计算获得结果的概率,至少极端,一个被实际观察到的零假设下,我们使用Monte Carlo方法,我们检查的频率统计的基础数据是更为极端比从模拟正常分布的数据具有相同的(列方向)的平均值(s)和(共)方差得到的统计数据。
值----------Value----------
参数:statistic
The result of the corresponding test statistic
相应的检验统计量的结果
参数:method
The chosen method (univariate, angle or radius)
(单变量选择的方法,角度或半径)
参数:p.value
p-value
p-值
注意----------Note----------
These functions are use by adtestWrapper.
这些功能使用adtestWrapper。
(作者)----------Author(s)----------
Karel Hron, Matthias Templ
参考文献----------References----------
Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes. Annals of Mathematical Statistics, 23 193-212.
参见----------See Also----------
adtestWrapper
adtestWrapper
实例----------Examples----------
adtest(rnorm(100))
data(machineOperators)
x <- machineOperators
adtest(ilr(x[,1:2]))
adtest(ilr(x[,1:3]))
adtest(ilr(x))
adtest(ilr(x[,1:2]), locscatt="robust")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|