rerun.mark(RMark)
rerun.mark()所属R语言包:RMark
Runs a previous MARK model with new starting values
运行前的的MARK模型与新的起点值
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Runs a previous MARK model with new starting values but without specifying the model parameter formulas. This function is most useful with mark.wrapper in which a list of models is analyzed and the set of formulas are not specified for each model.
在运行以前的MARK模型,新的起点值,但没有指定的模型参数公式。此功能是最有用的mark.wrapper在其中的列表的模型进行了分析和公式组没有被指定为每个模型。
用法----------Usage----------
rerun.mark(model, data, ddl, initial, output = TRUE,
title = "", invisible = TRUE, adjust = TRUE,
se = FALSE, filename = NULL, prefix = "mark",
default.fixed = TRUE, silent = FALSE, retry = 0,
realvcv = FALSE, external = FALSE)
参数----------Arguments----------
参数:model
previously run MARK model
以前运行的MARK模型
参数:data
processed dataframe used with model
使用模型处理数据框
参数:ddl
design data list used with model
使用模型设计数据列表
参数:initial
vector of initial values for beta parameters or previously run model object of similar structure
测试参数的初始值向量或先前运行的类似结构的模型对象
参数:output
If TRUE produces summary of model input and model output
如果是TRUE模型输入和输出模式生成汇总
参数:title
Optional title for the MARK analysis output
可选的标题的MARK分析的输出
参数:invisible
if TRUE, exectution of MARK.EXE is hidden from view
如果为TRUE,从视图中隐藏exectution MARK.EXE
参数:adjust
if TRUE, adjusts number of parameters (npar) to number of columns in design matrix, modifies AIC and records both
如果为true,则调整参数的数量(NPAR)的设计矩阵中的列数,修改AIC和记录都
参数:se
if TRUE, se and confidence intervals are shown in summary sent to screen
如果为TRUE,SE和置信区间是在总结发送到屏幕
参数:filename
base filename for files created by MARK.EXE. Files are named filename.*.
碱基的MARK.EXE创建的文件的文件名。被命名文件的文件名。*。
参数:prefix
base filename prefix for files created by MARK.EXE; the files are named prefixnnn.*
碱基的MARK.EXE创建的文件的文件名前缀为文件命名为prefixnnn。
参数:default.fixed
if TRUE, real parameters for which the design data have been deleted are fixed to default values
如果为TRUE,该设计数据已被删除的实参数被固定为默认值
参数:silent
if TRUE, errors that are encountered are suppressed
如果为TRUE,所遇到的错误被抑制
参数:retry
number of reanalyses to perform with new starting values when one or more parameters are singular
执行新的起点值时,一个或多个参数奇异的再分析
参数:realvcv
if TRUE the vcv matrix of the real parameters is extracted and stored in the model results
如果为TRUE VCV的真实参数的矩阵模型的结果中提取并存储在
参数:external
if TRUE the mark object is saved externally rather than in the workspace; the filename is kept in its place
如果为true,标记对象被保存在外部,而不是在工作区中的文件名保持在其位置
Details
详细信息----------Details----------
This is a simple function that restarts an analysis with MARK typically using another model for initial values of the beta parameters. The processed dataframe (data) and design data list (ddl) must be specified but the model.parameters are extracted from model. initial values are not optional otherwise this would be no different than the original call to mark. More complete definitions of the arguments can be found in mark or run.mark.model or make.mark.model.
这是一个简单的功能,重新启动的分析与MARK的测试参数的初始值,通常使用另一种模式。处理后的数据框(data)和设计数据列表(ddl)必须指定,但model.parameters提取model。 initial值是不可选的,否则,这将是比原来的调用mark没有什么不同。更完整的定义的参数中可以找到mark或run.mark.model或make.mark.model。
值----------Value----------
model: MARK model object with the base filename stored in output and the extracted results from the output file appended onto list; see mark for a detailed description of a mark object.
模型:的MARK模型对象的基本文件名存储在output和提取的results从输出文件添加到列表,请参阅mark的mark对象的详细说明, 。
(作者)----------Author(s)----------
Jeff Laake
参见----------See Also----------
make.mark.model, run.models, extract.mark.output, adjust.parameter.count, mark, cleanup
make.mark.model,run.models,extract.mark.output,adjust.parameter.count,mark,cleanup
实例----------Examples----------
## Not run: [#不运行:]
#[]
# The following example will not run because the data are not included in the[下面的例子将无法执行,因为数据不包含在]
# examples. It illustrates the use of rerun.mark with mark.wrapper. With this[的例子。它说明与mark.wrapper的使用的rerun.mark的。有了这个]
# particular data set the POPAN models were having difficulty converging. After[特定的数据设置的POPAN模型,遇到了困难汇聚。后]
# running the set of models using mark.wrapper and looking at the results it[运行的的机型采用mark.wrapper,和寻找的结果]
# was clear that in several instances the model did not converge. This is easiest[很明显,在一些情况下,该模型没有收敛。这是最简单的]
# to discern by comparing nested models in the model.table. If one model[辨别嵌套模型在model.table的比较。如果一个模型]
# is nested within another,then the deviance of the model with more[嵌套在另一个,然后越轨的模型与多个]
# parameters should be as good or better than the smaller model. If that[参数应该是比小模型一样好,甚至更好。如果这]
# is not the case then the model that converged can be used for initial[不是这种情况,那么融合模型可以用于初始]
# values in a call to rerun.mark for the model that did not converge.[在通话中的值rerun.mark的模型,该模型不收敛。]
#[]
do.nat=function()
{
Phi.ageclass=list(formula=~ageclass)
Phi.dot=list(formula=~1)
p.area=list(formula=~area)
p.timebin.plus.area=list(formula=~timebin+area)
p.timebin.x.area=list(formula=~-1+timebin:area)
pent.ageclass=list(formula=~ageclass)
pent.ageclass.plus.EN=list(formula=~ageclass+EN)
pent.ageclass.plus.diffEN=list(formula=~ageclass+EN92+EN97+EN02)
cml=create.model.list("POPAN")
nat=mark.wrapper(cml,data=zc.proc,ddl=zc.ddl,
invisible=FALSE,initial=1,retry=2)
return(nat)
}
nat=do.nat()
# model list[型号列表]
# Phi p pent[披p压抑]
#1 Phi.ageclass p.area pent.ageclass[1 Phi.ageclass p.area pent.ageclass]
#2 Phi.ageclass p.area pent.ageclass.plus.diffEN[2 Phi.ageclass p.area pent.ageclass.plus.diffEN]
#3 Phi.ageclass p.area pent.ageclass.plus.EN[3 Phi.ageclass p.area pent.ageclass.plus.EN]
#4 Phi.ageclass p.timebin.plus.area pent.ageclass[4 Phi.ageclass p.timebin.plus.area pent.ageclass]
#5 Phi.ageclass p.timebin.plus.area pent.ageclass.plus.diffEN[5 Phi.ageclass p.timebin.plus.area pent.ageclass.plus.diffEN]
#6 Phi.ageclass p.timebin.plus.area pent.ageclass.plus.EN[6 Phi.ageclass p.timebin.plus.area pent.ageclass.plus.EN]
#7 Phi.ageclass p.timebin.x.area pent.ageclass[7 Phi.ageclass p.timebin.x.area pent.ageclass]
#8 Phi.ageclass p.timebin.x.area pent.ageclass.plus.diffEN[8 Phi.ageclass p.timebin.x.area pent.ageclass.plus.diffEN]
#9 Phi.ageclass p.timebin.x.area pent.ageclass.plus.EN[9 Phi.ageclass p.timebin.x.area pent.ageclass.plus.EN]
#10 Phi.dot p.area pent.ageclass[10 Phi.dot p.area pent.ageclass]
#11 Phi.dot p.area pent.ageclass.plus.diffEN[11 Phi.dot p.area pent.ageclass.plus.diffEN]
#12 Phi.dot p.area pent.ageclass.plus.EN[12 Phi.dot p.area pent.ageclass.plus.EN]
#13 Phi.dot p.timebin.plus.area pent.ageclass[13 Phi.dot p.timebin.plus.area pent.ageclass]
#14 Phi.dot p.timebin.plus.area pent.ageclass.plus.diffEN[14 Phi.dot p.timebin.plus.area pent.ageclass.plus.diffEN]
#15 Phi.dot p.timebin.plus.area pent.ageclass.plus.EN[15 Phi.dot p.timebin.plus.area pent.ageclass.plus.EN]
#16 Phi.dot p.timebin.x.area pent.ageclass[16 Phi.dot p.timebin.x.area pent.ageclass]
#17 Phi.dot p.timebin.x.area pent.ageclass.plus.diffEN[17 Phi.dot p.timebin.x.area pent.ageclass.plus.diffEN]
#18 Phi.dot p.timebin.x.area pent.ageclass.plus.EN[18 Phi.dot p.timebin.x.area pent.ageclass.plus.EN]
#[]
# use model 9 as starting values for model 7[使用模型作为模型的初始值7]
nat[[7]]= rerun.mark(nat[[7]],data=zc.proc,ddl=zc.ddl,initial=nat[[9]])
# use model 3 as starting values for model 1[使用模型作为模型的初始值1]
nat[[1]]= rerun.mark(nat[[1]],data=zc.proc,ddl=zc.ddl,initial=nat[[3]])
# use model 14 as starting values for model 15[使用的初始值模型15模型14]
nat[[15]]= rerun.mark(nat[[15]],data=zc.proc,ddl=zc.ddl,initial=nat[[14]])
# use model 5 as starting values for model 6[使用模型作为模型的初始值6]
nat[[6]]= rerun.mark(nat[[6]],data=zc.proc,ddl=zc.ddl,initial=nat[[5]])
# use model 10 as starting values for model 11[使用模型模型的初始值11 10]
nat[[11]]= rerun.mark(nat[[11]],data=zc.proc,ddl=zc.ddl,initial=nat[[10]])
# use model 10 as starting values for model 12[使用模型模型的初始值12 10]
nat[[12]]= rerun.mark(nat[[12]],data=zc.proc,ddl=zc.ddl,initial=nat[[10]])
# reconstruct model table with new results[重建模型与新的研究结果表]
nat$model.table=model.table(nat[1:18])
# show new model table[显示新的模型表]
nat
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|