residuals.gam(mgcv)
residuals.gam()所属R语言包:mgcv
Generalized Additive Model residuals
广义可加模型的残差
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Returns residuals for a fitted gam model object. Pearson, deviance, working and response residuals are available.
返回残差拟合gam模型对象。皮尔森偏差,工作和应对残差。
用法----------Usage----------
## S3 method for class 'gam'
residuals(object, type = c("deviance", "pearson","scaled.pearson",
"working", "response"),...)
参数----------Arguments----------
参数:object
a gam fitted model object.
gam拟合模型对象。
参数:type
the type of residuals wanted.
的残差希望。
参数:...
other arguments.
其他参数。
Details
详情----------Details----------
Response residuals are the raw residuals (data minus fitted values). Scaled Pearson residuals are raw residuals divided by the standard deviation of the data according to the model mean variance relationship and estimated scale parameter. Pearson residuals are the same, but multiplied by the square root of the scale parameter (so they are independent of the scale parameter): ((y-m)/V(m)^0.5, where y is data m is model fitted value and V is model mean-variance relationship.). Both are provided since not all texts agree on the definition of Pearson residuals. Deviance residuals simply return the deviance residuals defined by the model family. Working residuals are the residuals returned from model fitting at convergence.
响应残差原料残差(数据减去拟合值)。鳞状Pearson残差是根据模型数据的标准差除以原始残差均方差关系和尺度参数估计。皮尔森残差是相同的,但乘以尺度参数(所以他们是独立的尺度参数)的平方根:((y-m)/V(m)^0.5,其中y资料m的模型拟合值和V是均值 - 方差模型关系。)。两者都提供了,因为并不是所有的文本同意Pearson残差定义。越轨残差简单地返回偏差残差定义的模范家庭。工作残差收敛拟合模型产生的残差。
There is a special function for gam objects because of a bug in the calculation of Pearson residuals in some earlier versions of residual.glm.
Pearson残差在计算gam的一些早期版本的错误的residual.glm对象,因为有一个特殊功能。
值----------Value----------
An array of residuals.
一个残差阵列。
作者(S)----------Author(s)----------
Simon N. Wood <a href="mailto:simon.wood@r-project.org">simon.wood@r-project.org</a>
参见----------See Also----------
gam
gam
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|