ACF.lme(nlme)
ACF.lme()所属R语言包:nlme
Autocorrelation Function for lme Residuals
LME残差的自相关函数
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This method function calculates the empirical autocorrelation function for the within-group residuals from an lme fit. The autocorrelation values are calculated using pairs of residuals within the innermost group level. The autocorrelation function is useful for investigating serial correlation models for equally spaced data.
这种方法函数计算经验lme适合组内残差自相关函数。用在最里面的组级别的双残差自相关值计算。自相关函数是有用的调查等距数据序列相关模型。
用法----------Usage----------
## S3 method for class 'lme'
ACF(object, maxLag, resType, ...)
参数----------Arguments----------
参数:object
an object inheriting from class lme, representing a fitted linear mixed-effects model.
一个对象从lme类代表拟合的线性混合效应模型,继承。
参数:maxLag
an optional integer giving the maximum lag for which the autocorrelation should be calculated. Defaults to maximum lag in the within-group residuals.
一个可选的整数,应计算为最大滞后的自相关。默认为在组内残差的最大滞后。
参数:resType
an optional character string specifying the type of residuals to be used. If "response", the "raw" residuals (observed - fitted) are used; else, if "pearson", the standardized residuals (raw residuals divided by the corresponding standard errors) are used; else, if "normalized", the normalized residuals (standardized residuals pre-multiplied by the inverse square-root factor of the estimated error correlation matrix) are used. Partial matching of arguments is used, so only the first character needs to be provided. Defaults to "pearson".
一个可选的字符串指定要使用的残差类型。如果"response",“原始”的残差(观测 - 拟合);否则,如果"pearson",标准化残差的(原料残差除以相应的标准误差);否则,如果 "normalized",用于归残差(标准化残差估计误差相关矩阵的逆平方根因素预乘)。使用部分匹配的参数,所以才有了第一个字符需要提供。 "pearson"默认。
参数:...
some methods for this generic require additional arguments – not used.
这个通用的一些方法需要额外的参数 - 不使用。
值----------Value----------
a data frame with columns lag and ACF representing, respectively, the lag between residuals within a pair and the corresponding empirical autocorrelation. The returned value inherits from class ACF.
与列的数据框lag和ACF,分别占内对相应的实证自相关的残差之间的滞后。返回值继承自类ACF。
作者(S)----------Author(s)----------
Jose Pinheiro and Douglas Bates <a href="mailto:bates@stat.wisc.edu">bates@stat.wisc.edu</a>
参考文献----------References----------
Analysis: Forecasting and Control", 3rd Edition, Holden-Day.
in S and S-PLUS", Springer.
参见----------See Also----------
ACF.gls, plot.ACF
ACF.gls,plot.ACF
举例----------Examples----------
fm1 <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),
Ovary, random = ~ sin(2*pi*Time) | Mare)
ACF(fm1, maxLag = 11)
# Pinheiro and Bates, p240-241[皮涅伊罗和贝茨,P240-241]
fm1Over.lme <- lme(follicles ~ sin(2*pi*Time) +
cos(2*pi*Time), data=Ovary,
random=pdDiag(~sin(2*pi*Time)) )
(ACF.fm1Over <- ACF(fm1Over.lme, maxLag=10))
plot(ACF.fm1Over, alpha=0.01)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|