shapiro.test(stats)
shapiro.test()所属R语言包:stats
Shapiro-Wilk Normality Test
夏皮罗 - 威尔克正态性检验
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Performs the Shapiro-Wilk test of normality.
执行正常的夏皮罗 - 威尔克测试。
用法----------Usage----------
shapiro.test(x)
参数----------Arguments----------
参数:x
a numeric vector of data values. Missing values are allowed, but the number of non-missing values must be between 3 and 5000.
数字矢量数据值。遗漏值是允许的,但非缺失值的数量必须是3和5000之间。
值----------Value----------
A list with class "htest" containing the following components:
一类"htest"包含以下组件的列表:
参数:statistic
the value of the Shapiro-Wilk statistic.
夏皮罗 - 威尔克统计值。
参数:p.value
an approximate p-value for the test. This is said in Royston (1995) to be adequate for p.value < 0.1.
一个近似的P-值的测试。据说这在罗伊斯顿(1995年)是足够p.value < 0.1。
参数:method
the character string "Shapiro-Wilk normality test".
字符串"Shapiro-Wilk normality test"。
参数:data.name
a character string giving the name(s) of the data.
字符串数据的名称(S)。
源----------Source----------
The algorithm used is a C translation of the Fortran code described in Royston (1995) and found at http://lib.stat.cmu.edu/apstat/R94. The calculation of the p value is exact for n = 3, otherwise approximations are used, separately for 4 ≤ n ≤ 11 and n ≥ 12.
所使用的算法是一个C转换罗伊斯顿(1995)描述,发现和http://lib.stat.cmu.edu/apstat/R94 Fortran代码。 p值的计算是准确n = 3,否则近似,分别为4 ≤ n ≤ 11和n ≥ 12。
参考文献----------References----------
An extension of Shapiro and Wilk's <code>W</code> test for normality to large samples. Applied Statistics, 31, 115–124.
Algorithm AS 181: The <code>W</code> test for Normality. Applied Statistics, 31, 176–180.
Remark AS R94: A remark on Algorithm AS 181: The <code>W</code> test for normality. Applied Statistics, 44, 547–551.
参见----------See Also----------
qqnorm for producing a normal quantile-quantile plot.
qqnorm产生正常的位数,位数图。
举例----------Examples----------
shapiro.test(rnorm(100, mean = 5, sd = 3))
shapiro.test(runif(100, min = 2, max = 4))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|