sammon(MASS)
sammon()所属R语言包:MASS
Sammon's Non-Linear Mapping
且优于塞曼的非线性映射
译者:生物统计家园网 机器人LoveR
描述----------Description----------
One form of non-metric multidimensional scaling.
非度量多维标度的一种形式。
用法----------Usage----------
sammon(d, y = cmdscale(d, k), k = 2, niter = 100, trace = TRUE,
magic = 0.2, tol = 1e-4)
参数----------Arguments----------
参数:d
distance structure of the form returned by dist, or a full, symmetric matrix. Data are assumed to be dissimilarities or relative distances, but must be positive except for self-distance. This can contain missing values.
距离dist,或一个完整的,对称矩阵结构形式返回。数据被认为是相异或相对距离,但必须是积极,除了自我距离。这可以包含缺失值。
参数:y
An initial configuration. If none is supplied, cmdscale is used to provide the classical solution. (If there are missing values in d, an initial configuration must be provided.) This must not have duplicates.
初始配置。如果没有提供,cmdscale被用来提供经典的解决方案。 (如果有失踪d值时,必须提供初始配置。),这绝不能有重复。
参数:k
The dimension of the configuration.
维度的配置。
参数:niter
The maximum number of iterations.
最大迭代次数。
参数:trace
Logical for tracing optimization. Default TRUE.
逻辑跟踪优化。默认TRUE。
参数:magic
initial value of the step size constant in diagonal Newton method.
步长不断对角线牛顿法的初始值。
参数:tol
Tolerance for stopping, in units of stress. </table>
停在单位的压力,公差。 </ TABLE>
Details
详情----------Details----------
This chooses a two-dimensional configuration to minimize the stress, the sum of squared differences between the input distances and those of the configuration, weighted by the distances, the whole sum being divided by the sum of input distances to make the stress scale-free.
选择一个两维的配置,以最大限度地减少压力之间的输入距离和配置,按距离加权平方差的总和,全总和除以输入距离的总和,使应力无尺度。
An iterative algorithm is used, which will usually converge in around 50 iterations. As this is necessarily an O(n^2) calculation, it is slow for large datasets. Further, since the configuration is only determined up to rotations and reflections (by convention the centroid is at the origin), the result can vary considerably from machine to machine. In this release the algorithm has been modified by adding a step-length search (magic) to ensure that it always goes downhill.
迭代算法使用,这通常会集中在大约50次迭代。因为这必然是一个O(n^2)计算,它是为大型数据集的缓慢。此外,自配置,只确定了旋转和反射(由“公约”的重心是在原点),结果可以有很大的不同从机器到机器。在此版本中,该算法已被修改,增加一个步长搜索(magic),以确保它总是下坡去。
值----------Value----------
Two components:
两部分组成:
参数:points
A two-column vector of the fitted configuration.
一个两列装配置的向量。
参数:stress
The final stress achieved. </table>
取得了最后的压力。 </ TABLE>
副作用----------Side Effects----------
If trace is true, the initial stress and the current stress are printed out every 10 iterations.
如果跟踪是真实的,初始应力和电流应力打印出每10次迭代。
参考文献----------References----------
A non-linear mapping for data structure analysis. IEEE Trans. Comput., C-18 401–409.
Pattern Recognition and Neural Networks. Cambridge University Press.
Modern Applied Statistics with S. Fourth edition. Springer.
参见----------See Also----------
cmdscale, isoMDS
cmdscale,isoMDS
举例----------Examples----------
swiss.x <- as.matrix(swiss[, -1])
swiss.sam <- sammon(dist(swiss.x))
plot(swiss.sam$points, type = "n")
text(swiss.sam$points, labels = as.character(1:nrow(swiss.x)))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|