bkfe(KernSmooth)
bkfe()所属R语言包:KernSmooth
Compute a Binned Kernel Functional Estimate
计算一个分级的核心功能估计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Returns an estimate of a binned approximation to the kernel estimate of the specified density functional. The kernel is the standard normal density.
返回一个指定的密度泛函核估计的分级近似的估计。内核是标准的正常密度。
用法----------Usage----------
bkfe(x, drv, bandwidth, gridsize = 401L, range.x, binned = FALSE,
truncate = TRUE)
参数----------Arguments----------
参数:x
vector of observations from the distribution whose density is to be estimated. Missing values are not allowed.
从分布的密度估计的观测向量。遗漏值是不允许的。
参数:drv
order of derivative in the density functional. Must be a non-negative even integer.
在密度泛函衍生的秩序。必须是一个非负整数。
参数:bandwidth
the kernel bandwidth smoothing parameter. Must be supplied.
内核带宽平滑参数。必须提供。
参数:gridsize
the number of equally-spaced points over which binning is performed.
其中分级执行同样间距点的数量。
参数:range.x
vector containing the minimum and maximum values of x at which to compute the estimate. The default is the minimum and maximum data values, extended by the support of the kernel.
向量x在计算估计的最小值和最大值。默认是最大和最小的数据值,由内核支持延长。
参数:binned
logical flag: if TRUE, then x and y are taken to be grid counts rather than raw data.
标志的逻辑:如果TRUE,则x和y格计数,而不是原始数据。
参数:truncate
logical flag: if TRUE, data with x values outside the range specified by range.x are ignored. </table>
逻辑标志:如果TRUE,x值range.x指定的范围之外的数据将被忽略。 </ TABLE>
Details
详情----------Details----------
The density functional of order drv is the integral of the product of the density and its drvth derivative. The kernel estimates of such quantities are computed using a binned implementation, and the kernel is the standard normal density.
为了drv是不可分割的密度和drv日衍生产品的功能密度。这种数量的内核估计计算采用分级实施,内核是正常的标准密度。
值----------Value----------
the (scalar) estimated functional.
(标量)估计功能。
背景----------Background----------
Estimates of this type were proposed by Sheather and Jones (1991).
这种类型的预算提出了由Sheather和琼斯(1991)。
参考文献----------References----------
A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B, 53, 683–690.
Kernel Smoothing. Chapman and Hall, London.
举例----------Examples----------
data(geyser, package="MASS")
x <- geyser$duration
est <- bkfe(x, drv=4, bandwidth=0.3)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|