mams.sim(MAMS)
mams.sim()所属R语言包:MAMS
Simulating multi-arm multi-stage designs
模拟多组多级设计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The function simulates multi-arm multi-stage designs and estimates power and expected sample size.
功能模拟多组多级设计和估算的动力和预期的样本量。
用法----------Usage----------
mams.sim(nsim=1000,nMat=matrix(c(44,88),nrow=2,ncol=5),u=c(3.068,2.169),
l=c(0.000,2.169),pv=rep(0.5,4),ptest=1)
参数----------Arguments----------
参数:nsim
Number of simulation (default=1000).
模拟数(默认值= 1000)。
参数:nMat
Jx(K+1) dimensional matrix of observed/expected sample sizes. Rows correspond to stages and columns to arms. First column is control (default: 2x4 matrix with 10 subjects per stage and arm).
JX(K +1)维矩阵观察/预期的样本量。行对应到武器阶段和列。第一列是控制(默认:2x4的矩阵,每阶段10个科目和手臂)。
参数:u
Vector of previously used upper boundaries (default=NULL).
向量以前使用过的上边界(默认= NULL)。
参数:l
Vector of previously used upper boundaries (default=NULL).
向量以前使用过的上边界(默认= NULL)。
参数:pv
Vector of true treatment effects. See Details (default=rep(0.5,4).
矢量真正的治疗效果。详情请参阅(默认值= REP(0.5,4)。
参数:ptest
Vector of treatment numbers for determining power. For example, c(1,2) will count rejections of one or both hypotheses for testing treatments 1 and 2 against control.
确定电源的向量处理数字。例如,C(1,2)将一个或两个假设测试处理1和处理2对控制数的拒绝。
Details
详细信息----------Details----------
This function simulates multi-arm multi-stage studies for a given matrix of sample sizes and boundaries given by the vectors u and l. The effect difference between each experimental treatment and control is given by pv and is parameterized as P(X_k > X_0 ) = p. That is the probability of a randomly selected person on treatment k observing a better outcome than a random person on control. For pv=rep(0.5,4 the experimental treatments and control perform equally well (i.e. the global null hypothesis is true). The advantage of this paramterization is that no knowledge about the variance is required. To convert traditional effect sizes, delta to this format use Phi(delta/(2^0.5*sigma)).<br>
此功能可模拟多组多级的研究,向量u和l给定矩阵的样本大小和边界。各实验治疗和控制效果差pv,,参数化P(X_k > X_0 ) = p。这是一个随机选择的人,一个更好的结果,而不是一个素不相识的人在控制ķ观察治疗的可能性。对于pv=rep(0.5,4的试验性治疗和控制同样表现出色(即全球原假设为真)。本PARAMTERIZATION的优点是,需要没有了解方差。为了将这种格式使用传统的影响大小,deltaPhi(delta/(2^0.5*sigma))。<BR>
The function returns the probability of rejecting any hypothesis (typeI), the power to reject the first treatment when the first treatment has the largest estimated effect, the proportion of rejections of the hypothesis specified by ptest (prop.rej) as well as the expected sample size. <br>
该函数返回的概率拒绝任何假设(typeI),有权拒绝在第一次治疗,第一次治疗时,有最大的预期效益,ptest(指定的假设被拒绝的比例prop.rej),以及预期的样本大小。参考
值----------Value----------
An object of the class MAMS.sim containing the following components: <br>
一个对象的类MAMS.sim包含以下组件:参考
res$typeI <- mean(unlist(reps["rej",])) res$power <- mean(unlist(reps["pow",])) res$prop.rej <- rej/nsim res$exss <- mean(unlist(reps["ess",]))
RESⅠ型< - 意思是(不公开(代表“REJ”,]))RES功率< - 意思是(不公开(代表“POW”]))RES prop.rej < - REJ / NSIM水库exss < - 是什么意思(不公开(代表“ESS”))
参数:l
Lower boundary.
下边界。
参数:u
Upper boundary.
上边界。
参数:n
Sample size on control in stage 1.
在第1阶段的控制样品尺寸。
参数:N
Maximum total sample size.
最大总样本量。
参数:K
Number of experimental treatments.
数的试验性治疗。
参数:J
Number of stages in the trial.
在审判阶段的数目。
参数:rMat
Matrix of allocation ratios. First row corresponds to control and second row to experimental treatments.
矩阵的分配比例。第一行对应的控制和第二排的实验性治疗。
参数:nsim
Number of simulation runs.
模拟运行数。
参数:typeI
The proportion any hypothesis is rejected.
任何假设被拒绝的比例。
参数:power
The proportion the first hypothesis is rejected and the corresponding test statistic is largest.
第一个假设被拒绝的比例和相应的检验统计量是最大的。
参数:ptest
The vector ptest.
向量ptest。
参数:prop.rej
The proportion of times at least one of the hypothesis specified by ptest is rejected.
的次数的比例中的至少一个指定的假设由ptest被拒绝。
参数:exss
The expected sample size.
预期的样本量。
(作者)----------Author(s)----------
Thomas Jaki and Dominic Magirr
参考文献----------References----------
实例----------Examples----------
######[#####]
#### Note that some of these examples may take a few minutes to run[###需要注意的是其中一些例子可能需要几分钟的时间运行]
######[#####]
# 2-stage design with O'Brien & Fleming efficacy and zero futility boundary with equal sample size [奥布莱恩弗莱明的疗效和零徒劳的边界样本量等于2级设计]
# per arm and stage. Design can be found using[每臂和舞台。设计可以使用]
# mams(K=4, J=2, alpha=0.05, power=0.9, r=1:2, r0=1:2, u.shape="obf", l.shape="fixed", lfix=0, p=0.65, p0=0.55)[MAMS(K = 4,J = 2,α= 0.05,功率= 0.9河= 1:2时,r0 = 1:2,u.shape =“OBF”,l.shape =“固定”,lfix = 0, P = 0.65,P0 = 0.55)]
# under global null hypothesis[全球零假设下]
mams.sim(nsim=10000,nMat=matrix(c(44,88),nrow=2,ncol=5),u=c(3.068,2.169),
l=c(0.000,2.169),pv=rep(0.5,4),ptest=1)
# under LFC[根据LFC]
mams.sim(nsim=10000,nMat=matrix(c(44,88),nrow=2,ncol=5),u=c(3.068,2.169),
l=c(0.000,2.169),pv=c(0.65,0.55,0.55,0.55),ptest=1:2)
# when all treatments doing similarly well[当所有的治疗同样也]
mams.sim(nsim=10000,nMat=matrix(c(44,88),nrow=2,ncol=5),u=c(3.068,2.169),
l=c(0.000,2.169),pv=c(0.63,0.62,0.60,0.61),ptest=4)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|