mt(csampling)
mt()所属R语言包:csampling
Multivariate Student t Distribution
多元学生t分布
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Density and random number generation for the multivariate Student t distribution.
密度和学生的多元t分布的随机数生成。
用法----------Usage----------
dmt(x, df=stop("'df' argument is missing, with no default"),
mm=rep(0, length(x)), cov=diag(rep(1, length(x))))
rmt(n, df=stop("'df' argument is missing, with no default"),
mm=rep(0, mult), cov=diag(rep(1, mult)), mult, is.chol=FALSE)
参数----------Arguments----------
参数:x
a single multivariate observation. Missing values (NAs) are allowed.
一个单一的多元观察。遗漏值(NAS)是允许的。
参数:n
the sample size. If length(n) is larger than 1, then length(n) random vectors are returned, bound together in a length(n) times mult matrix, where mult is the dimension of the multivariate variable.
样本大小。如果length(n)是大于1的,那么length(n)随机向量回来了,一起在length(n)倍mult矩阵,其中mult的尺寸多元变量。
参数:df
the degrees of freedom. In rmt this is replicated to be of the same length than the number of deviates generated by rmt.
的自由度。在rmt“”这是复制的数量比相同长度的偏离所产生的rmt。
参数:mult
the dimension of the multivariate Student t variate.
的多元学生t变量的尺寸。
参数:mm
a vector location parameter. The default is a vector of 0's.
一个向量的位置参数。默认值是0的向量。
参数:cov
a square scale matrix. The default is the identity matrix.
一个正方形的规模矩阵。默认值是单位矩阵。
参数:is.chol
logical flag. If TRUE, the argument cov is the result from the Choleski decomposition of the original scale matrix.
逻辑标志。如果TRUE,参数cov是原来的规模矩阵,从Choleski分解的结果。
值----------Value----------
Returns the density (dmt) of or a random sample (rmt) from the multivariate Student t distribution on df degrees of freedom.
返回的密度(dmt)(rmt)df自由度学生从多元t分布的随机抽样。
副作用----------Side Effects----------
The function rmt causes creation of the dataset .Random.seed if it does not already exist, otherwise its value is updated.
函数rmt使创建的数据集.Random.seed,如果它不存在的,否则它的值更新。
背景----------Background----------
The multivariate Student t distribution is a real valued symmetric distribution centered at mm. It is defined as the ratio of a centred multivariate normal distribution with covariance matrix cov, and the square root of an independent Chi square distribution with df degrees of freedom subsequently translated by mm. (See <CITE>Johnson and Kotz, 1976, par. 37.3, pg. 134ff</CITE>.) The multivariate t distribution approaches the multivariate Gaussian (Normal) distribution as the degrees of freedom go to infinity.
多元学生t分布是一个真正的价值为中心的对称分布在mm。它被定义为一个中心的多元正态分布,协方差矩阵cov,和一个独立的Chi square用df自由度随后mm翻译的平方根之比。 (见<CITE>约翰逊和科茨,1976年,面值37.3页。134ff </ CITE>)。多元t分布趋于多元高斯(Normal)分配到无穷大的自由度去。
注意----------Note----------
Elements of x that are missing will cause the corresponding elements of the result to be missing.
元素的x缺少会导致相应的元素的结果会丢失。
参考文献----------References----------
Statistics: Continuous Multivariate Distributions. New York: Wiley.
参见----------See Also----------
TDist, Normal, Random.
TDist,Normal,Random。
实例----------Examples----------
dmt(c(0.1, -0.4), df = 4, mm = c(1, -1))
## density of a bivariate t distribution with 4 degrees of freedom [有4个自由度的二元t分布的密度]
## and centered at (1,-1)[#和集中在(1,-1)的]
rmt(n = 100, df = 5, mult = 4)
## generates 100 replicates of a standard four-variate t distribution [#生成100次重复的标准的四变量t分布]
## with 5 degress of freedom[#5辈分的自由]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|