找回密码
 注册
查看: 1483|回复: 0

R语言 tweeDEseq包 mlePoissonTweedie()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 15:50:37 | 显示全部楼层 |阅读模式
mlePoissonTweedie(tweeDEseq)
mlePoissonTweedie()所属R语言包:tweeDEseq

                                         Maximum likelihood estimation of the Poisson-Tweedie parameters
                                         泊松特威迪参数的最大似然估计

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Maximum likelihood estimation of the Poisson-Tweedie parameters using L-BFGS-B quasi-Newton method.
使用L-bfgs-B的拟牛顿法的Poisson-Tweedie爵士参数的最大似然估计。


用法----------Usage----------


mlePoissonTweedie(x, a, D.ini, a.ini, maxit = 100, loglik=TRUE, maxCount=20000, ...)
getParam(object)



参数----------Arguments----------

参数:x
numeric vector containing the read counts.  
读取计数的数字向量。


参数:a
numeric scalar smaller than 1, if specified the PT shape parameter will be fixed.  
数字标量小于1,如果指定的PT形状参数将被固定。


参数:D.ini
numeric positive scalar giving the initial value for the dispersion.  
数字正标量,使分散的初始值。


参数:a.ini
numeric scalar smaller than 1 giving the initial value for the shape parameter (ignored if 'a' is specified).  
数字标为形状参数(如果一指定忽略)的初始值小于1。


参数:maxit
numeric scalar providing the maximum number of 'L-BFGS-B' iterations to be performed (default is '100').  
数字标提供的“L-bfgs-B”进行迭代(默认是100)的最大数量。


参数:loglik
is log-likelihood computed? The default is TRUE  
数似然计算?默认值是TRUE


参数:object
an object of class 'mlePT'.  
类“mlePT”的对象。


参数:maxCount
if max(x) > maxCount, then moment method is used to estimate model parameters to reduce computation time. The default is 20000.  
如果max(X)> MAXCOUNT,然后使用矩法估计模型参数,以减少计算时间。默认是20000。


参数:...
additional arguments to be passed to the 'optim' 'control' options.  
额外的参数被传递到“OPTIM”,“控制”选项。


Details

详情----------Details----------

The L-BFGS-B quasi-Newton method is used to calculate iteratively the maximum likelihood estimates of the three Poisson-Tweedie parameters. If 'a' argument is specified, this parameter will be fixed and the method will only estimate the other two.
L-bfgs-B的拟牛顿法用于计算迭代三个泊松特威迪参数的最大似然估计。如果“指定参数,此参数将被固定的方法将只估计其他两个。


值----------Value----------

An object of class 'mlePT' containing the following information:
一个类的mlePT的对象,其中包含以下信息:

par: numeric vector giving the estimated mean ('mu'), dispersion ('D') and shape parameter 'a'.
面值:数字矢量估计平均(亩),分散(“D”)和形状参数一。

se: numeric vector containing the standard errors of the estimated parameters 'mu', 'D' and 'a'.
SE:数字向量万亩估计参数,D和一的标准误差。

loglik: numeric scalar providing the value of the loglikelihod for the estimated parameters.
loglik:数字标量为参数估计值的loglikelihod。

iter: numeric scalar giving the number of performed iterations.
ITER:数字标量,使执行的迭代次数。

paramZhu: numeric vector giving the values of the estimated parameters in the Zhu parameterization 'a', 'b' and 'c'.
paramZhu:提供数字矢量估计的参数值在朱参数,B和c。

paramHou: numeric vector giving the values of the estimated parameters in the Hougaard parameterization 'alpha', 'delta' and 'theta'.
paramHou:数字向量Hougaard参数“阿尔法”,“Delta”和“西塔”的参数估计值。

skewness: numeric scalar providing the estimate of the skewness given the estimated parameters.
偏:数字标提供了参数估计的偏估计。

x: numeric vector containing the count data introduced as the 'x' argument by the user.
X:数字向量计数数据用户推出的X的说法。

convergence:  A character string giving any additional information returned by the optimizer, or 'NULL'.
收敛:给予任何其他信息的优化,或“NULL”返回一个字符串。


参考文献----------References----------

A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. Submitted.
using the Poisson-Tweedie family. Environmetrics 22, pages 152-164.
overdispersed count data by mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238.

参见----------See Also----------

testShapePT print.mlePT
testShapePTprint.mlePT


举例----------Examples----------


# Generate 500 random counts following a Poisson Inverse Gaussian[产生500泊松逆高斯随机数]
# distribution with mean = 20 and dispersion = 5[分布均值为= 20和分散= 5]
randomCounts <- rPT(n = 500, mu = 20, D = 5, a = 0.5)

# Estimate all three parameters[估计所有三个参数]
res1 <- mlePoissonTweedie(x = randomCounts, a.ini = 0, D.ini
= 10)
res1
getParam(res1)

#Fix 'a = 0.5' and estimate the other two parameters[修复= 0.5“,估计其他两个参数]
res2 <- mlePoissonTweedie(x = randomCounts, a = 0.5, D.ini
= 10)
res2
getParam(res2)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-22 21:09 , Processed in 0.020506 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表