找回密码
 注册
查看: 1395|回复: 0

R语言 TSSi包 TSSi-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 15:49:01 | 显示全部楼层 |阅读模式
TSSi-package(TSSi)
TSSi-package()所属R语言包:TSSi

                                        Transcription Start Site Identification
                                         转录起始位点识别

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The TSSi package normalizes and identifies transcription start sites in high-throughput sequencing data.
TSSi包标准化,并确定转录起始位点的高通量测序数据。


Details

详情----------Details----------

High throughput sequencing has become an essential experimental approach for the investigation of transcriptional mechanisms. For some applications like ChIP-seq, there are several available approaches for the prediction of peak locations. However, these methods are not designed for the identification of transcription start sites (TSS) because such data sets have qualitatively different noise.
高通量测序,转录机制的调查,已成为一个重要的实验方法。对于像芯片-seq的一些应用,有几个可用的峰值位置的预测方法。然而,这些方法都不能确定转录起始位点(TSS),设计,因为这样的数据集有质的不同噪声。

The TSSi provides a heuristic framework for the identification of TSS based on high-throughput sequencing data. Probabilistic assumptions for the count distribution as well as for systematic errors, i.e. for contaminating measurements close to a TSS, are made and can be adapted by the user. The framework also comprises a regularization procedure which can be applied as a preprocessing step to decrease the noise and thereby reduce the number of false predictions.
TSSi提供了一个TSS的识别启发式框架的基础上的高通量测序数据。的数量分布以及系统误差的概率假设,即接近一个TSS污染测量,是可以适应用户。该框架还包括一个正规化的过程,可作为预处理步骤,以减少噪音,从而减少虚假预测。

The package is published under the GPL-3 license.
包发布在GPL下-3许可证。


作者(S)----------Author(s)----------



Clemens Kreutz, Julian Gehring, Jens Timmer

Maintainer: Julian Gehring <julian.gehring@fdm.uni-freiburg.de>




参考文献----------References----------

TSSi - An R package for transcription start site identification from high throughput sequencing data.


参见----------See Also----------

Package: TSSi-package
包装:TSSi-package

Methods: segmentizeCounts, normalizeCounts, identifyStartSites, get-methods, plot-methods, asRangedData-methods
方法:segmentizeCounts,normalizeCounts,identifyStartSites,get-methods,plot-methods,asRangedData-methods

Functions: subtract-functions
功能:subtract-functions

Classes: TssData, TssNorm, TssResult
类别:TssData,TssNorm,TssResult

Data set: physcoCounts
数据集:physcoCounts


举例----------Examples----------


## load data set[#加载数据集]
data(physcoCounts)

## segmentize data[#segmentize数据]
attach(physcoCounts)
x <- segmentizeCounts(counts=counts, start=start, chr=chromosome,
region=region, strand=strand)
detach(physcoCounts)

x
segments(x)

## normalize data, w/o and w/ fitting[#标准化数据,W / O和W /件]
yRatio <- normalizeCounts(x)
yFit <- normalizeCounts(x, fit=TRUE)
yFit

## identify TSS[#确定TSS的]
z <- identifyStartSites(yFit)
z

## inspect results[#检查结果]
head(tss(z, 1))
plot(z, 1)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-22 20:52 , Processed in 0.022846 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表