RIcorrect(TargetSearch)
RIcorrect()所属R语言包:TargetSearch
Peak picking from CDF files and RI correction
从山顶采摘CDF文件和RI校正
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function reads from CDF files, finds the apex intensities, converts the retention time to retention time index (RI), and writes RI corrected text files.
此功能读取CDF文件,发现心尖强度,转换的保留时间,保留时间指数(RI),并将其写入国际扶轮校正的文本文件。
用法----------Usage----------
RIcorrect(samples, rimLimits = NULL, massRange, Window, IntThreshold,
pp.method = "ppc", showProgressBar = FALSE, baseline = FALSE,
baseline.opts = NULL )
参数----------Arguments----------
参数:samples
A tsSample object created by ImportSamples function.
一个tsSampleImportSamples函数创建的对象。
参数:rimLimits
A tsRim object. If set to NULL, no retention time will be performed. See ImportFameSettings.
一个tsRim对象。如果设置为NULL,没有保留时间将被执行。看到ImportFameSettings。
参数:massRange
A two component vector of m/z range used by the GC-MS machine.
m / z范围的两个组件向量的GC-MS机使用。
参数:Window
The window used for smoothing. The number of points actually used is 2*Window + 1.
该窗口用于平滑。实际使用的点数是2*Window + 1。
参数:IntThreshold
Apex intensities lower than this value will be removed from the RI files.
从RI文件将被删除顶点强度低于此值。
参数:pp.method
Peak picking method. Options are either "smoothing" or "ppc". See details.
山顶采摘方法。选项是“平滑”或“竞价排名”。查看详情。
参数:showProgressBar
Logical. Should the progress bar be displayed?
逻辑。应该显示进度条?
参数:baseline
Logical. Should baseline correction be performed?
逻辑。应进行基线校正?
参数:baseline.opts
A list of options passed to baselineCorrection </table>
一个传递给baselineCorrection</ TABLE>的奖励。选项列表
Details
详情----------Details----------
There are two pick picking methods available: "ppc" and "smoothing".
有两个挑捡可用的方法:“竞价排名”和“平滑”。
The "ppc" method (default) implements the peak detection method described in the ppc package. It looks for the local maxima within a 2*Window + 1 scans for every mass trace.
“竞价排名”的方法(默认)实现ppc包中描述的峰值检测方法的。它看起来2*Window + 1每一个质量跟踪扫描内的局部最大值。
The "smoothing" method calculates a moving average of 2*Window + 1 points for every mass trace. Then it looks for a change of sign (from positive to negative) of the difference between two consecutive points. Those points will be returned as detected peaks.
“平滑”的方法计算了2*Window + 1每一个质量跟踪点的移动平均线。然后,它看起来为标志的变化(从正到负)连续两个点之间的差异。将这些点返回作为检测山峰。
值----------Value----------
A retention time matrix of the found retention time markers. Every column represents a sample and rows RT markers.
一个发现的保留时间标记的保留时间矩阵。每一列代表一个样本,行逆转录标志。
作者(S)----------Author(s)----------
Alvaro Cuadros-Inostroza, Matthew Hannah, Henning Redestig
参见----------See Also----------
ImportSamples, ImportFameSettings, NetCDFPeakFinding, FAMEoutliers,
ImportSamples,ImportFameSettings,NetCDFPeakFinding,FAMEoutliers
举例----------Examples----------
require(TargetSearchData)
# import refLibrary, rimLimits and sampleDescription.[进口refLibrary,rimLimits和sampleDescription。]
data(TargetSearchData)
# get the CDF files[得到CDF文件]
cdfpath <- file.path(.find.package("TargetSearchData"), "gc-ms-data")
cdfpath
list.files(cdfpath)
# update the CDF path[更新CDF路径]
CDFpath(sampleDescription) <- cdfpath
# run RIcorrect (massScanRange = 85-320; Intensity Threshold = 50;[运行RIcorrect(massScanRange = 85-320;强度阈值= 50;]
# peak detection method = "ppc", window = 15)[峰值检测方法=“竞价排名”,“窗口= 15)]
RImatrix <- RIcorrect(sampleDescription, rimLimits, massRange = c(85,320),
Window = 15, pp.method = "ppc", IntThreshold = 50)
# you can try other parameters and other peak picking algorithm.[你可以尝试其他参数和其他高峰采摘算法。]
RImatrix <- RIcorrect(sampleDescription, rimLimits, massRange = c(85,320),
Window = 15, pp.method = "smoothing", IntThreshold = 10)
RImatrix <- RIcorrect(sampleDescription, rimLimits, massRange = c(85,320),
Window = 15, pp.method = "ppc", IntThreshold = 100)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|