sva(sva)
sva()所属R语言包:sva
Estimate surrogate variables with an iterative algorithm from gene expression and model data
估计从基因表达和模型数据与迭代算法的替代变量
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimate surrogate variables are estimated using either the iteratively re-weighted surrogate variable analysis algorithm of Leek and Storey (2008) or the two-step algorithm of Leek and Storey (2007).
估计使用的迭代重新加权代理韭菜变量分析算法和层高(2008)或韭菜层的两步算法(2007)估计的替代变量。
用法----------Usage----------
sva(dat, mod, mod0 = NULL,n.sv=NULL,method=c("irw","two-step"),vfilter=NULL, B=5)
参数----------Arguments----------
参数:dat
A m genes by n arrays matrix of expression data
由n阵列基因表达数据矩阵A M基因
参数:mod
A n by k model matrix corresponding to the primary model fit (see model.matrix)
K型矩阵对应的主模型拟合A N(见model.matrix)的
参数:mod0
A n by k0 model matrix corresponding to the null model to be compared to mod.
一个n到K0模型矩阵对应的空模型进行比较,以国防部。
参数:n.sv
Optional. The number of surrogate variables to estimate, can be estimated using the num.sv function
可选的。代理变量的数目估计,可以预计使用num.sv功能
参数:method
Choose between the iteratively re-weighted or two-step surrogate variable estimation algorithms.
选择之间的迭代重新加权或两步的替代变量估计算法。
参数:vfilter
The number of most variable genes to use when building SVs, must be between 100 and m
大多数可变区基因,建立状态变量时使用,数量必须是100和m之间
参数:B
The number of iterations of the algorithm to perform.
算法执行的迭代数。
Details
详情----------Details----------
Surrogate variable estimates are formed based on the algorithms in Leek and Storey (2007,2008). Surrogate variables can be included in a significance analysis to reduce dependence and confounding.
代理变量的估计,韭菜和层高(2007,2008)的算法的基础上形成。替代变量可以包含在一个意义分析,以减少依赖和混杂。
值----------Value----------
A list containing:
一份列表,列出:
参数:sv
A n by n.sv matrix where each column is a distinct surrogate variable (the main quantity of interest)
A N n.sv矩阵,其中每一列是一个独特的代理变量(利益主体的数量)
参数:pprob.gam
A vector with the posterior probability estimates that each row is affected by dependence.
后验概率向量估计,每行所依赖的影响。
参数:pprob.b
A vector with the posterior probabiliity estimates that each row is affected by the variables in mod, but not in mod0.
矢量与后probabiliity的估计,每行由国防部,但没有在MOD0的变量的影响。
参数:n.sv
The number of suggorate variables estimated.
suggorate变量的估计数。
作者(S)----------Author(s)----------
Jeffrey T. Leek <a href="mailto:jleek@jhsph.edu">jleek@jhsph.edu</a>, John Storey <a href="mailto:jstorey@princeton.edu">jstorey@princeton.edu</a>
参考文献----------References----------
dependence. Proceedings of the National Academy of Sciences, 105: 18718-18723. http://www.biostat.jhsph.edu/~jleek/publications.html
studies by surrogate variable analysis. PLoS Genetics, 3: e161. http://www.biostat.jhsph.edu/~jleek/publications.html
参见----------See Also----------
irwsva.build, twostepsva.build, num.sv, ComBat, fsva
irwsva.build,twostepsva.build,num.sv,ComBat,fsva
举例----------Examples----------
## Not run: [#无法运行:]
## Load data[#将数据]
library(bladderbatch)
data(bladderdata)
## Obtain phenotypic data[#获取表型数据。]
pheno = pData(bladderEset)
edata = exprs(bladderEset)
batch = pheno$batch
mod = model.matrix(~as.factor(cancer), data=pheno)
mod0 = model.matrix(~1, data=pheno)
## Construct the surrogate variables [#构建的代理变量]
svaobj <- sva(edata,mod,mod0,method="irw")
## Include them in a downstream analysis[#包括在下游的分析]
mod.sv <- cbind(mod,svaobj$sv)
mod0.sv <- cbind(mod0,svaobj$sv)
adjusted.pvals <- f.pvalue(dat,mod.sv,mod0.sv)
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|